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An application of quantum causal analysis to asymmetric entangled states under decoherence is
considered. Two models of decoherence: dissipation and depolarization are studied. For the both models
the strength and the direction of induced causality has been computed. It turns out that the decoherence
acting along original causality destroys entanglement to a lesser degree than it acting against this
causality.
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1. Introduction

The decoherence is a key problem which impedes quantum
computers creation. Therefore the exploration of an entanglement
decay processes is very important in quantum information physics.
Ref. [1] poses the problem of a dependence between bipartite state
asymmetry and a rate of entanglement decay, when only one sub-
system interacts with an environment. The study considers bipar-
tite entangled state ρAB which satisfies an inequality

S B < S AB < S A, (1)

where S A , S B and S AB are von Neumann entropies of two sub-
systems and the whole system respectively. In view of the fact
that the inequality S AB < S A can be realized only for quantum
variables, the subsystem A was called “quantum”; contrastingly,
subsystem B was called “classical”. A model of discrete dynam-
ics of entanglement, which involves global unitary dynamics of the
system and periodic actions of depolarizing channel, of such asym-
metrical system was considered. As a result, it was discovered that
the entanglement decreases faster if the depolarizing channel acts
on the “classical” subsystem. This counterintuitive effect was called
subsequently an anomalous entanglement decay.

In the present Letter we consider an implementation of quan-
tum causal analysis [2,3] to such “quantum–classical” states. This
new method is intended for the asymmetric systems analysis and
reveals interesting peculiarities of entanglement decay processes in
the different models of decoherence.
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The Letter is organized as follows. In Section 2 we briefly
describe the principles of quantum causal analysis and shortly
overview some previous results to gain greater insight into the
subject of this Letter as part of a broader problem. In Section 3
we describe two different models of decoherence: dissipation and
depolarization. In Section 4 we apply the quantum causal analysis
to asymmetric “quantum-causal” state under dissipation and de-
polarization. Then we compare the behavior of causality in these
processes with corresponding decay of entanglement. The results
of the Letter are summed up in Section 5.

2. Quantum causal analysis

Causal analysis is a new method, which propose an original ap-
proach to causal connection understanding. Firstly it was designed
for classical variables (e.g. [4]) and later it was extended and ap-
plied to quantum variables [2,3]. Causal analysis is based on the
idea that there is an information asymmetry in the cause–effect
relation. Indeed, in spite of the fact that principle of causality is
widely used in physics, it usually means no more than retardation
of the effect relative to the cause. However, the retardation is nec-
essary but it is not a sufficient condition of the causal connection
(“Post hoc non est propter hoc”). The fact that in simple situations
we usually are able to realize what is a cause and what is an effect
without retardation measurement indicates that these conceptions
are asymmetrical (e.g. there is obvious casual relationship between
the currents of a lamp and of a photocell circuits). The problem
is to formally define this asymmetry without resort to time rela-
tion, which has to be introduced as an axiom after the definition is
made. It is actual for complicated situations in systems with feed-
backs, where usual intuitive understanding of causality may lead

http://dx.doi.org/10.1016/j.physleta.2012.01.032
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/pla
mailto:evgeniy.kiktenko@gmail.com
http://dx.doi.org/10.1016/j.physleta.2012.01.032


E.O. Kiktenko, S.M. Korotaev / Physics Letters A 376 (2012) 820–823 821
to misunderstandings. The key idea of causal analysis can be for-
mulated as follows: in terms of information transmission process,
the cause influences the effect to a greater extent than the effect
influences the cause.

Mathematical formalization of causal analysis is founded on a
pair of independence functions

i A|B = S A|B/S A,

iB|A = S B|A/S B , (2)

where S A , S B , S A|B , S B|A are marginal and conditional entropies
for two variables A and B (for the classical variables Shannon en-
tropies are used, for the quantum ones – von Neumann entropies).
It is easy to see that for the classical variables i ∈ [0,1]. The mean-
ing of the independence functions is quite transparent: at iB|A = 1
B is independent of A; at iB|A = 0 B is one-valued function of A.
In other words, the values 1 − i determine the unilateral depen-
dences of the variables. i A|B �= iB|A means that the causal connec-
tion between subsystems takes place. It is also can be observed
that for the quantum variables i ∈ [−1,1] (since the conditional
entropy can be negative in entangled states). In particular, for the
bipartite pure entangled states from Schmidt decomposition it is
follows that i A|B = iB|A = −1, thus zero independence functions
correspond to maximal classical correlations; negative indepen-
dence functions correspond to quantum correlations. In any case
the inequality i A|B > iB|A qualitatively indicates that A is the cause
and B is the effect.

As a quantitative measure of causality the linear velocity of
irreversible information flow c2, called the course of time, was de-
rived [2,3] (the notation followed Kozyrev’s pioneer work on causal
mechanics [5], where originally although in less rigorous terms a
pseudoscalar of the same meaning was introduced):

c2 = k
(1 − i A|B)(1 − iB|A)

i A|B − iB|A
(3)

where k = �r/δt is a dimensional coefficient which is defined by
an effective distance �r and brachistochrone evolution time δt [6].
Then the formal definition of causality connection is introduced:
“The cause A and the effect B are the subsystems for which c2 > 0”.
Negative values of c2 mean that B is the cause and A is the effect.
The absence of causal connection corresponds to |c2| → ∞. So the
less |c2|, the stronger causality is.

To keep the examples described bellow from becoming too so-
phisticated, we shall restrict ourselves to calculations of c2 with
k = 1, because, as it has been demonstrated in Ref. [2], the precise
estimation of c2 with regard to variable k, calculated through the
eigenvalues of Hamiltonian, does not lead to a qualitative change
in c2 behavior.

Then we can formulate the axiom for retardation τ of the effect
relative the cause in classical causality:

c2 > 0 ⇒ τ > 0,

c2 < 0 ⇒ τ < 0,

|c2| → ∞ ⇒ τ → 0. (4)

It should be pointed out that nonlocal correlations are often
treated as instantaneous and causeless. Our approach includes such
treatment, but only as a particular case. Ref. [2] shows that in all
pure states |c2| → ∞ and only in the mixed states c2 can be finite.
Therefore the mixedness turns out to be a necessary condition for
quantum causality.

In Ref. [7] Cramer was the first to distinguish the principles of
strong and weak causality. The strong (local) causality corresponds
to the usual condition for retardation of the effect relative to the
cause described by (4). Without this axiom we have the weak
causality, which corresponds only to nonlocal correlations and im-
plies a possibility of information transmission in reverse time, but
only related with unknown states (hence “the telegraph to the
past” is impossible). Note that in the examples of Section 4 we
shall nowhere use the axiom (4). Reverse time is allowed at least
in a transactional sense [8]. Moreover (although it is not very im-
portant for the present Letter scope) it should be mentioned, that
weak causality admits the extraction of information from the fu-
ture without the well-known classical paradoxes. The experimental
possibility of detection of such time reversal phenomenon was the-
oretically predicted by Elitzur and Dolev [9] and really proved for
the intramolecular teleportation [10] and for the macroscopic en-
tanglement, e.g. [11].

Relation between the measure of causality c2, the different
measures of entanglement, mixedness and concrete system and
environment parameters has been studied in the wide range of
examples of the two- [2] and three- [3] qubit states. Some results
turned out to be rather nontrivial: for instance, one of particu-
lar results is that for thermal entanglement under a nonuniform
external magnetic field the effect always corresponds to the region
of stronger field, and although directionality of causal connection is
unaffected by temperature, but its value is affected by temperature
oppositely in the parallel and antiparallel fields. Another general
result is that causality can be induced by asymmetric decoherence.

In the rest of the Letter we consider an implementation of the
quantum causal analysis to the different variants of decoherence
with quite interesting consequences.

3. Decoherence models

Let us consider two simplest models of decoherence: dissipa-
tion and depolarization. In line with Refs. [12,13] the dissipation
process is described by the following transformation of corre-
sponding density matrix elements:

|0〉〈0| → |0〉〈0|,
|1〉〈1| → (1 − p)|1〉〈1| + p|0〉〈0|,
|0〉〈1| → √

1 − p|0〉〈1|,
|1〉〈0| → √

1 − p|1〉〈0|, (5)

where p ∈ [0,1] defines a decoherence degree. Thereby the com-
plete dissipation turns a subsystem under decoherence into the
state |0〉〈0| with zero von Neumann entropy. In terms of causal
analysis it means that corresponding subsystem turns into a sink
of information or, in other words, into an effect.

The depolarization can be depicted by the following transfor-
mation of corresponding density matrix elements [12,13]:

|0〉〈0| → (1 − p)|0〉〈0| + pI/2,

|1〉〈1| → (1 − p)|1〉〈1| + pI/2,

|0〉〈1| → (1 − p)|0〉〈1|,
|1〉〈0| → (1 − p)|1〉〈0|, (6)

where I is identity matrix. From this transformation we notice that
the complete depolarization turns a subsystem under decoherence
into the state I/2 with maximal von Neumann entropy (1 bit). In
terms of causal analysis it means that corresponding subsystem
turns into a source of information or, in other words, into a cause.

Thus we have two fundamentally different versions of the de-
coherence process with opposite directions of induced causality.

4. Causality and entanglement

In line with Ref. [1] let us consider general form of asymmetric
bipartite entangled state:
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Fig. 1. Linear velocity of irreversible information flow c2 as a measure of causality in the different cases of decoherence: (a) dissipation (5) of subsystem A (solid line) and
subsystem B (dashed line); (b) depolarization (6) of subsystem A (solid line) and subsystem B (dashed line).

Fig. 2. Concurrence C as a measure of entanglement in the different cases of decoherence: (a) dissipation (5) of subsystem A (solid line) and subsystem B (dashed line);
(b) depolarization (6) of subsystem A (solid line) and subsystem B (dashed line).
ρ
asym
AB = q|ψ1〉〈ψ1| + (1 − q)|ψ2〉〈ψ2|, (7)

where |ψ1〉 = a|00〉 + √
1 − a2|11〉 and |ψ2〉 = a|10〉 + √

1 − a2|01〉
are normalized pure state vectors.

Similarly to Ref. [1] we take the system ρ0
AB = ρ

asym
AB |q=q0,a=a0

for q0 = 3/5 and a2
0 = 3/4. For these parameters S B = 0.562,

S AB = 0.673 and S A = 0.688, so such a system satisfies the in-
equality (1). Therefore the subsystem A can be called “quantum”
and the subsystem B – “classical”. The linear velocity of irre-
versible information flow c2 = 4.590 > 0, so the causal connection
has direction A → B .

We consider the decoherence processes of a single subsystem
from the state ρ0

AB . The behavior of linear velocities of irreversible
information flow cdis A

2 (p) and cdis B
2 (p) in the cases of subsystem

A and subsystem B dissipation (5) is shown in Fig. 1. In the case
of subsystem A dissipation we observe that cdis A

2 (p) discontinues
and changes its sign at p = 0.444. It means that causality changes
its direction from A → B to B → A. At greater p causality in-
creases up to its maximal value: cdis A
2 (p) → 0 at p → 0. In the

case of subsystem B dissipation we observe monotonous amplifi-
cation of causal connection. Such a behavior is totally conformed
with the statement that dissipation makes the corresponding sub-
system into a sink of information or, in other words, into an ef-
fect.

The behavior of causality in the depolarization processes (6) is
shown in Fig. 1(b). We observe a discontinuance and a change of
sign of cdep B

2 (p) at p = 0.8 in the case of the subsystem B depo-
larization. Similarly to the case of subsystem A dissipation, state
causality of subsystem B depolarization changes its direction and
then increases up to maximal value: cdep B

2 (p) → 0 at p → 0. In the
case of subsystem A depolarization causality increases monotoni-
cally up to its maximal value. Thereby the depolarization acts in
opposite way in comparison to the dissipation. Such a behavior is
totally conformed with the statement that dissipation makes the
corresponding subsystem into a source of information or, in other
words, into a cause.
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Now let us consider the behavior of an entanglement for all
the four different cases of decoherence. For an entanglement mea-
sure we use the concurrence C [14]. For the initial state ρ0

AB
C0 = 0.173.

The behavior of concurrences for the dissipation is presented
in Fig. 2(a). From this figure we notice that in the case of A sub-
system dissipation the entanglement decay is stronger than that
one in the case of B subsystem dissipation (Cdis A(p) < Cdis B(p)

at p > 0). It means that for the dissipation process the “classical”
subsystem is more tolerant in sense of entanglement persistence.

The case of depolarization is presented in Fig. 2(b). As it is evi-
dent from this figure, “quantum” subsystem is more tolerant from
the standpoint of entanglement persistence in the depolarization
process: Cdep A(p) > Cdep B(p) at p > 0. So we have got the anoma-
lous entanglement decay which was discovered in Ref. [1] for the
more complicated model of depolarizing channel which involves
unitary dynamics of the system.

By the comparison of Figs. 1 and 2 we can conclude that the
entanglement decay is always stronger in the cases of causality
reversal. Therefore from the standpoint of entanglement persistence
the decoherence acting along original causality is better than the one
acting against this causality. In other words, for entanglement per-
sistence one should not “stroke the system against the grain”. So
the anomalous entanglement decay phenomenon appears in en-
tropy maximizing processes like depolarization and does not take
place in entropy minimizing processes like dissipation.

5. Conclusion

We have considered the causality behavior and entanglement
decay processes in the asymmetric “quantum–classical” state (7)
under two models of decoherence: the dissipation (5) and the de-
polarization (6). Let us list the principal conclusions.
1. The extent of system asymmetry can be characterized by the
measure of causality c2.

2. The different types of decoherence have the different impacts
on causality: the subsystem under dissipation becomes an ef-
fect (information sink), the subsystem under depolarization
becomes a cause (information source).

3. From the standpoint of entanglement persistence, decoher-
ence, which is acting on asymmetric bipartite system along
original causality, is better than the one acting against this
causality.

Finally it should be noted that the similar conclusions are ap-
plicable not only to “quantum–classical” states, which are char-
acterized by inequality (1), but to all the asymmetric states with
unequal subsystem entropies.
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