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Quantum teleportation is a protocol capable of sending an unknown quantum state between two parties (Alice and 
Bob). It consists of two channels: the quantum one that is a maximally entangled bipartite state, and the classical one 

– a standard communication channel. It turns out that quantum channel looks as transmitting signal both forward and 
back in time (e.g. Penrose, 1998). Also it leads to a phenomenon of conditional time travel, which was confirmed 

experimentally by Laforest et al. in 2003. In our work we examine reversal time process in quantum teleportation 
with quantum causal analysis, which is a new method giving a formal definition and quantitative measure of causal 

connection in any bipartite system. We consider a modified protocol of teleportation without an ancillary classical 
channel.  Instead  of  the  unitary  transformation,  made  by  Bob  after  receiving  a  classical  signal  from Alice,  he 

measures his particle. We move a moment of Bob's measurement in time and watch how causality between the input 
state, the outcome of Alice's joint measurement, and Bob's outcome changes. It  turns out that Bob's outcome is 

always the effect relative to the first two values even in the case when it was obtained before the input state for 
teleportation was prepared. So we obtain time reversal causality,  but with cause consisting of absolutely random 

variable representing Alice's measurement outcome. Therefore we can say that Bob can receive a message from 
random future. On the other hand, an implementation of causal analysis to time reversal treatment of teleportation, 

which introduces a proper time frame for teleporting qubit (different from observer's time frame), shows that in this 
special time frame all the effects appear after corresponding causes. Besides this demonstration of time reversal 

causality, we have considered teleportation of qubit which is in causal connection with another qubit. As a result the 
possibility of causality teleportation has been uncovered.

Introduction
Quantum teleportation [1] is a protocol which allows transmitting an unknown quantum state 
from one spatially separated party (commonly named Alice) to another party (commonly named 
Bob) without movement of any quantum carriers. To perform this operation Alice and Bob need 
to  share  a  pair  of  maximally  entangled  particles.  From  the  moment  of  its  discovery, 
entanglement attracts attention by apparent violation of relativity.  In the case of teleportation 
relativity is not violated because Alice and Bob also need a classical channel to complete the 
protocol.  Nevertheless quantum information seems to pass through quantum channel that  the 
entangled pair is. Such suggestion implies the presence of signaling in reverse time considered in 
Ref. [2] and experimentally tested in Ref. [3].

In this paper we consider the question about causality in quantum teleportation.  We use 
quantum causal analysis  [4, 5] – a new method, which proposes formal definitions for terms 
“cause” and “effect” and also proposes a quantitative measure for strength of causal connection. 
It helps to validate an implementation of time reversal treatment of teleportation and reveals 
peculiarities of signaling through reverse time.

We also consider a teleportation of qubit which is causal connection with another qubit. As a 
result we uncover the possibility of “causality teleportation”.
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General scheme of quantum teleportation
First, let us describe the general idea of quantum teleportation. Suppose there are two spatially 
separated parties, commonly named Alice and Bob. One of them (Alice) has a particle A in some 

quantum  state  ψ  and  wants  to  transmit  this  state  (but  not  a  particle)  to  Bob.  Quantum 

teleportation is a protocol which allows Bob to obtain this state on his particle  B.  And with 
agreement with no cloning theorem, during teleportation particle  A loses its state. So quantum 
teleportation  is  a  process  of  transmitting  of  quantum  state  in  space  without  movement  of 
quantum particles.

We will consider the simplest variant of quantum teleportation, where teleporting state is a 

qubit,  that  is  a  superposition  of  two orthogonal  states: 0  and  1 .  For  example,  it  may be 

polarization  degrees  of  freedom  of  photon.  For  the  purposes  of  convenience  we  will  use 
modified notation for standard Bell basis vectors:
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Initially Alice has a particle A in the state 0 1ψ α β= +  (
2 2

1α β+ = ). Teleportation is 

based on usage of  maximally entangled  two-qubit  states,  for  example  Bell  state  4Ψ .  One 

particle from entangled pair goes to Alice (C), and another one B goes to Bob (Fig. 1a).
In the first step Alice makes a join measurement on particles A and C and gets some state 

from Bell basis: ?Ψ . The question mark is sub index indicates that the result it totally random. 

In Einstein’s terms we can say that it is “a result playing dice of God with the Universe”.
Alice’s measurement causes a collapse according to identity
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(2.2)

The  particle  B turns  into  one  of  four  pure  states,  depending  on  what  result  Alice  has 

obtained. To get state  ψ  Bob needs to transform his state of  B but he doesn’t know which 

transformation he needs to apply. But Alice does. She sends the result of her measurement (one 
of four numbers or 2 bits of classical information) by any classical communication channel. Bob 
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applies proper transformation  U and obtains his particle  B in state ψ . In Fig, 1a we use the 

question mark again to emphasize that this transformation depends on Alice’s result.

Fig.  1: (a)  General  scheme  of  quantum teleportation.  (b)  Conditional  time  travel.  (c)  Time  reversal 
treatment of quantum teleportation.

Conditional time travel and the time reversal treatment 
There is  an intriguing peculiarity  of quantum teleportation,  called  conditional  time travel.  If 

Alice obtains in her measurement the same state as the initial state of CB (in our case it is 4Ψ ) 

then Bob transformation U will be represented by identity matrix. It means that Bob already has 
his particle in proper state (see Fig. 1b). The question is from which moment Bob already has his 
particle in proper state.  From the viewpoint of standard mathematical approach it seems that 
Bob’s particle collapses in proper state in the moment of Alice’s measurement. But it is strange 
because the problem with instantaneity in space-like interval appears. The last candidate is a 
moment of EPR pair birth. And really, if we placed a measurement device anywhere on timeline 

of B, this device would produce statistics like it measures the state ψ , but only in the case when 

Alice will get a proper result in her measurement. That is why it is called conditional time travel.
In Ref. [3] it was developed an alternative theoretical description for processes in quantum 

teleportation. The entangled pair has been considered as a channel, which qubit ψ  follows (see 

Fig. 1c). Each measurement in basis of entangled states or creation of entangled state has been 
considered as “time mirror” which changes a direction of qubit propagation in time and makes 
unitary transformation depending on the corresponding entangled state

 ( )
,

2 , |i ia b
W b a= Ψ .  (3.1)
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So after Bell measurement of Alice qubit ψ  becomes randomly transformed depending on 

the  Alice’s  result.  Then it  goes  back  in  time  and becomes  transformed  once  again  but  this 
transformation is exact. And then goes forward in time to Bob transformation that appears to 

equal to inverse of all previous transformation: ( ) 1† †
? 4 ? ? 4U W W W W

−
= = .

This new time reversal treatment totally confirms with standard tensor product treatment, 
but its main feature is that it in intuitive way explains the phenomenon of conditional time travel. 
Next  we are  going  to  consider  a  question about  causality  which  appears  in  context  of  time 
reversal implementation.

Essence of quantum causal analysis
The standard approach to causality is to suppose that effect is something that goes after cause in 
time order. But retardation is necessary but not efficient condition for causality and moreover in 
real  situations  we often  do  not  measure  retardation  to  know that  something  is  a  cause  and 
something  is  an effect  of  this  cause.  It  indicates  that  there  is  some fundamental  asymmetry 
between cause and effect.

The idea of using information theory to define this asymmetry has resulted in an appearance 
of  causal  analysis  [6],  where  the  cause  is  defined  as  subsystem  which  influences  another 
subsystem (the effect) stronger than vice versa. 

Next  let  us introduce basic  principles  of quantum causal  analysis  [4,  5].  Consider some 

bipartite  quantum system  AB,  which  is  defined  by  density  matrices  ABρ ,  TrA B ABρ ρ=  and 

TrB A ABρ ρ= .  We  can  use  marginal  ( ( ) [ ]2Tr logX XS X ρ ρ= − )  and  conditional  (

( ) ( ) ( )|S X Y S XY S Y= − )  von  Neumann  entropies  to  construct  a  pair  of  so-called 

independence functions:
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which characterize an influence of A on B and B on A.

Causal connection between A and B corresponds to the inequality | | A B B Ai i≠ . Then by use of 

Shannon’s theorem about maximal speed of information transmission between A and B we can 
obtain minimal times of sending information from  A to  B and from  B to  A. It  turns out that 
during any period of time effect receives from cause more information than cause receives from 

effect. Finally we can introduce the velocity of irreversible information flow  2c  (the notation 

follows the tradition of Ref. [7], where originally, although in less rigorous terms, the course of 

time pseudoscalar 2c  of the same meaning was introduced):
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Then we can introduce a formal definition for causal connection: A is the cause and B is the 

effect  if  ( )2 , 0с A B > .  Absence  of  causal  connection  corresponds  to  | |A B B Ai i=  and 

( )2 ,с A B → ∞ , so the less ( )2 ,с A B  is the stronger causality is. 

The main feature of causal analysis is that it does not use a retardation to define causality. 
For classical causal connection it can be introduced as an axiom:

( ) ( ) ( )2 2 2, 0 0,   , 0 0,   , 0A B A B A Bс A B с A B с A Bτ τ τ→ → →> ⇒ > < ⇒ < → ∞ ⇒ → ,  (4.3)

where A Bτ →   is time delay between embodiments of A and B. 

In Ref. [8] Cramer was the first to distinguish the principles of strong and weak causality. 
The  strong  (local)  causality  corresponds  to  the  usual  condition  for  retardation  of  the  effect 
relative to the cause described by (4.3). Without this axiom we have the weak causality, which 
corresponds only to nonlocal correlations and implies a possibility of information transmission in 
reverse time. We will use the violation of (4.3) in quantum teleportation for revealing of such 
signals and will see that they can carry only random information (hence ”the telegraph to the 
past” is impossible).

There is one interesting property of 2c  which clearly illustrates its meaning. Consider a set 

of systems A, B, C, D, E (see Fig. 2) which somehow interact with each other.

Fig. 2: Illustration of circulation property for 2c .

For  any  pair  of  these  systems X and  Y we  can  introduce  mutual  information 

( ) ( ) ( ) ( ),I X Y S X S Y S XY= + −  as a measure of total correlations between them. On the one 

hand the value of mutual information is symmetric in sense that ( ) ( ), ,I X Y I Y X= . On the other 

hand our measure of causality is anti-symmetric: ( ) ( )2 2, ,c X Y c Y X= − .

Moreover one can show that (4.2) can be rewritten as
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Then, if we choose some closed outline which connects some of these systems and chose a 
direction in which one can go through this outline we can find that a sum of all values of mutual 

information divided by corresponding 2c  is equal to zero. E.g. for the outline A-B-C-E in Fig. 2 

we have 
( )
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( )
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( )
( )2 2 2 2

, , , ,
0

, , , ,

I A B I B C I C E I A E

c A B c B C c C E c E A
+ + + = . We can interpret it as the inhibition of 

causal loops.

Implementation of causal analysis to teleportation
Now we can implement the method of causal analysis to teleportation. First we should consider a 
standard tensor product treatment. From its point of view teleportation occurs in the moment of 
Bell measurement. We can consider two configurations of experiment. In case a Bob measures 
his particle  B before Alice’s measurement (Fig. 3a). From the tensor product treatment he just 
gets some random result. In case b Bob measures his particle after Alice’s measurement and also 
gets some random result be this result in encoded version of input state of Alice (Fig. 3b).

Fig.  3: Two  configurations  of  experiment:  (a)  Bob  measures  his  particle  B  before  Alice’s  joint 
measurement; (b) Bob measures his particle B after Alice’s joint measurement.

Also we can introduce two variants of input signal: in variant  I it is pure state  0  and in 

variant II it is maximally mixed state 
1 1

0 0 1 1
2 2

+ . So we get four different configurations: 

aI, aII, bI and bII.
To see the behavior of causality we should write a density matrix for the whole system ACB. 

To the purposes of convenience we write  it  as function of parameter  p.  For  0p =  we have 

system just before Bell measurement, for 1p =  we have system after Bell measurement. Finally 

we obtain four density matrices during Bell measurement of Alice:
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where
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Causality in partition  AC-B for all  situations is presented in Fig.4. We see that causality 
always amplifies with growth of p and the main peculiarity of causality behavior is that for all 

four configurations  ( )2 , 0c AC B >  at  0 1p< < . This is nontrivial  result for cases  aI and  aII, 

where Bob performs his measurement  before Alice’s one.  So form the view point of formal 
causal analysis it is possible to obtain situation when cause happens after effect.

Fig. 4: The behavior of causalities in partition AC-B in different configurations of experiment.

Now let us consider the same four cases with time reversal  treatment.  It introduces new 
object  D which  is  a  result  of  Bell  measurement  of  A and  C.  Moreover  in  the time reversal 
treatment there is no differences between the configurations  a and  b. Finally we can construct 
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two “density matrices” for the cases  I and  II  (superscript “tr” emphases that we work in time 
reversal treatment):

4
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4 4
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(5.2)

For states (5.2) we obtain the following results:  ( ),tr
2 ,Ic AC B = ∞ ,  ( ),tr

2 , 1Ic D B =  – these 

values correspond to the cases aI and bI at 0p =  and 1p = ; ( ),tr
2 , 1IIc AC B = , ( ),tr

2 , 0IIc D B =  – 

these values correspond to the cases aII at 0p =  and aII and bII at 1p =  (see Fig.3). Note that 

we have obtained  ( )2 , 2bIIc AC B =  at  0p = , because of  ( ) 0S CB = . In time reversal treatment 

we always have ( ) 1S CB =  because the state “knows” that it will be measured.

In time reversal approach we can consider the new partitions: AD-C and AD-B. From (5.2) 

we obtain ( ) ( ),tr ,tr
2 2, , 1I Ic AD C c AD B= =  and ( ) ( ),tr ,tr

2 2

1
, ,

2
II IIc AD C c AD B= = . We see that these 

values reveal the propagation of qubit through reverse time. In time reversal treatment all the 
effects appear after corresponding causes (from the view point of formal causal analysis).

Finally we can reconstruct the full picture of causal connections in quantum teleportation. 
Entangled pair CB is a carrier of two signals: the input state A and absolutely random result of 
Bell measurement D. Unitary transformation U removes influence of random D form B and Bob 
gets initial state of  A. The most interesting is that by measuring  B Bob doesn’t just get some 
random  result,  this  randomness  comes  through  reverse  time.  If  we  artificially  remove 
randomness from D by corresponding postselection we automatically obtain the conditional time 
travel.

Teleportation of the causal states
Quantum teleportation has one very interesting modification called  entanglement swapping [9, 
10]. Actually it is teleportation of qubit which is entangled with another qubit. After teleportation 
it appears to be still entangled. In the Fig. 5a we show entanglement swapping between pair A-C 
and pair A-B by teleportation of C on B.

Entanglement swapping is a particular case of more general situation, when AC is described 
by the arbitrary matrix ρ . And after the same operations we will obtain state AB in initial state 
of AC. But the state ρ  may be causal in sense of informational asymmetry. For example A may 
be a cause with respect to C or vice versa (see Fig. 5b).

In such situations we obtain the teleportation of causality. It is the interesting phenomenon, 
which can take place in the quantum world. It should be noted that teleportation of causality like 
standard quantum teleportation is limited by speed of light.
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Fig. 5: (a) Scheme of entanglement swapping. (b) Scheme of causality teleportation.

Conclusion
We have considered different treatments of quantum teleportation with quantum causal analysis. 
Let us make the conclusions. 

(1) Causal analysis  justifies  an implementation of time reversal  treatment  to  teleportation, 
because exactly in time reversal treatment all the effects appear after the corresponding 
causes.

(2) Time  reversal  is  an  inherent  property  of  quantum  entanglement  and  allows  getting 
information about random future.

(3) Causal analysis  shows that “conditional time travel” appears to be a particular case of 
general signal transmission through reverse time.

(4) Quantum teleportation implies  the possibility of causality teleportation, limited by speed 
of light.

The considered features of time reversal approach may help to understand the experimental 
results on macroscopic nonlocality (e.g. [11]).
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