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Abstract
The interaction between an initially pure two-level atom and the mixed thermal quantized field
mode in the framework of the Jaynes–Cummings model is considered with the employment of
quantum causal analysis . At the high temperature of the field, a distinction between the
resulting properties of initially excited and ground atom states smoothes over and the whole
state turns out to be causally asymmetric, entangled and ‘classical’ in the entropic sense. The
average asymptotic entanglement is found. It is revealed that the thermalization acting on the
field corresponds to the stronger causality and entanglement decay, rather than the
thermalization acting only on the atom.

PACS numbers: 03.65.Ud, 03.67.Mn

1. Introduction

Entanglement is an intriguing phenomenon in quantum
systems, which has been intensively studied in recent
years. On the one hand, it demonstrates surprising and
important non-local features of our world and on the
other hand, it appears to be a key resource for quantum
computation, teleportation and other implementations of
quantum information theory. There are some general issues
in these implementations arising from the non-locality:
the separation of quantum and classical correlations and
the causality in the entangled states (because non-local
correlations can be instantaneous and even advanced). The
first issue has been clarified by quantum discord [1–3].
To clarify the second issue, a method of quantum causal
analysis has been suggested recently. The latter gives a
quantitative measure of causality based on information flow
asymmetry regardless of the time relation. Besides a general
understanding of the somewhat surprising features of quantum
causality, the application of this method to various entangled
states allowed physicists to gain insight into important
practical phenomenon of the asymmetric fragility of these
states to the different kinds of decoherence [4–7]. However,
in these works, only the low-dimensional systems (two-

and three-qubit mixed states) were considered. This paper
is motivated by an interest in extending the causal analysis
application to high-dimensional systems.

In this paper, we study the high-dimensional
entanglement generated in the interaction between a two-
level atom and the quantized resonant mode of a field,
described by the commonly known Jaynes–Cummings model
(JCM) [8]. It is a rather simple but effective model that has
an analytical solution and which has been applied e.g. for
describing the processes in the one-atom maser [9]. In [10],
JCM was considered for the description of the interaction
between a two-level atom initially in a pure state and a
quantized resonant field mode initially in a mixed thermal
state. Using the projection method on 2 × 2 systems, it was
found that an entanglement created by the JCM interaction
persists at the arbitrary high temperature of the field, but only
the lower bound of it was estimated.

In this study, we do not use the projections and consider
an analytical solution of corresponding von Neumann
equation. Such treatment makes it possible to study the
dynamics of any desired initial state. The problem of the
infinite dimensionality of the field matrix is solved by taking
into account the bounding of a number of fields’ energy states.
Such a treatment is quite appropriate because the thermal
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distribution is exponentially decaying. Finite dimensionality
makes it possible to use negativity as an entanglement
measure.

Another interesting feature of the considered system
is its asymmetry: an atom and a field have different
entropic properties as a consequence of their different
dimensionalities. Zyczkowski and Horodecki were the first
to question the role of system asymmetry for quantum
information transfer [11]. For a study of this asymmetry, we
use quantum causal analysis. To observe the role of causality
(information flow asymmetry), we consider a thermalization
process which acts on the one subsystem (field or atom)
together with the JCM interaction.

The paper is organized as follows. In section 2, the
kernel of quantum causal analysis is presented. In section 3,
we consider the JCM interaction and propose a model
of thermalization process. Next we consider a step-wise
evolution, which includes both the JCM interaction and the
thermalization process. In section 4, we present computational
results for different system characteristics during evolutions
with and without the thermalization process and then discuss
them in section 5. The conclusions are given in section 6.

2. Quantum causal analysis

Quantum causal analysis [4–7] is a new method which
suggests the original approach to understanding of causality,
previously developed at the classical level and widely applied
to various classical physics problem (e.g. [12]). The essence
of causal analysis is based on the formalization of the usual
intuitive ‘cause’ and ‘effect’ concepts from the informational
flow asymmetry of corresponding processes without invoking
time relations. The retardation of an effect relative to the cause
is introduced after their definition as an axiom.

To understand the principles of quantum causal analysis,
let us consider a quantum bipartite state, which is
characterized by the density matrix ρAB and consists of
two subsystems A and B with reduced density matrices ρA

and ρB respectively. Using these matrices, we can calculate
corresponding von Neumann entropies SA, SB and SAB by a
general formula

SX = −Tr[ρX log2 ρX ], (1)

where X could be A, B or AB.
Mathematical formalization of causal analysis is founded

on a pair of independence functions

i A|B = SA|B/SA,

iB|A = SB|A/SB,
(2)

where SA|B = SAB − SB and SB|A = SAB − SA are conditional
entropies. It is easy to see that for quantum variables i ∈

[−1, 1], the independence functions are actually normalized
conditional entropies. To understand the idea of independence
functions, let us consider the main demonstrative cases. iB|A =

−1 (which can occur only when iA|B = −1 too) means that the
considered state is pure and entangled: SAB = 0, SA = SB 6=

0, which corresponds to quantum correlations between two
subsystems. If iB|A = 0, then SAB = SA and we obtain that
the state B is one-valued function of the state A (notice that

iB|A = 0 does not imply iA|B = 0). Therefore, in this context,
we have maximal classical correlations. Further, in the case
of iB|A = 1, values of B are independent from A. Thus the
smaller the value of iB|A, the stronger the influence of A on
B. It is very important that in the general case iB|A 6= i A|B ,
so independence functions characterizes one-way correlations
between two subsystems in contrast to the mutual information

IAB = SA + SB − SAB = IAB, (3)

which characterizes total (quantum and classical) two-way
correlations between the subsystems.

Another interesting feature of the independence functions
is that they are non-negative (i ∈ [0, 1]) for classical
and separable states (such states satisfy inequality SAB >
max(SA, SB) and their conditional entropies cannot be
negative). In turn, negative values of the independence
functions correspond to a non-classical phenomenon such
as entanglement (e.g. as has already been mentioned for
all pure entangled states i A|B = iB|A = −1). Therefore, the
independence functions can indicate whether the system is
‘quantum’ or ‘classical’ in the entropic sense. If at least one
independence function is negative (i A|B < 0 or iB|A < 0), then
the system should be called ‘quantum’. If both iA|B > 0 and
iB|A > 0, then the system should be called ‘classical’. It is
worth noting that similar definitions were proposed in [11]
(there the authors considered ‘quantum-classical’ bipartite
state AB, where the A subsystem was ‘quantum’ with
iB|A < 0 and B was ‘classical’ with i A|B > 0). In [4, 5], the
authors uncovered that it is possible to have a situation when
a mixed state has both positive independence functions but is
still entangled. So separability is an efficient but not necessary
condition for the non-negativity of independence functions.
Below we will show that such a situation is quite typical for
an atom–field interaction.

There is an obvious qualitative agreement between the
independence functions and quantum discord [1–3], which is
defined as

DAB = IAB − max
{5B

k }

J
{5B

k }

AB , (4)

where {5B
k } is the complete set of positive operator valued

measurements of B and J
{5B

k }

AB . This is the mutual information

of the state ρ̃
{5B

k }

AB =
∑

k 5B
k ρAB5B

k , where the original state
ρAB after the measurement is {5B

k }. Quantum discord
measures the maximum amount of locally inaccessible
information and it is widely used as a measure of the
quantumness of correlations. The greater the discord is, the
greater the quantum correlations are.

In line with (4) we can obtain an expression for
DB A, which corresponds to measurement of A. There
are mixed states with asymmetrical discords DAB 6= DB A.
Compared to the independence functions, the quantum
discord computation is more complicated because it involves
projection measurements with a search of the optimal basis.
Also there are property distinctions, which are more essential.
The quantum discord can be non-zero for separable states,
while both the independence functions cannot be negative
for these states. However, the main point is that a derivation
of the causality measure via the standard theorem about the
information flow rate through a noisy channel is possible
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only in terms of the independence function pair [4, 5]. Thus,
although some physical results gained from the quantum
discord and independence functions may be similar, the main
problem of causal analysis is resolved precisely in terms of
the independence functions.

In the causal analysis, the independence functions are
used to determine a direction and a strength of causality,
accordingly to inequality iB|A 6= i A|B . To measure the causal
connection between subsystems A and B, we use cAB

2 , called
the course of time (notation follows Kozyrev’s pioneering
work on causal mechanics [13]), derived in [4, 5] as the
velocity of an irreversible information flow:

cAB
2 = k

(1 − iA|B)(1 − iB|A)

i A|B − iB|A
, (5)

where k = 1r/δt . 1r is the effective distance between A and
B, while δt is the time of the brachistochrone evolution [14].
For orthogonal states

δt =
π h̄

2(1E)max
, (6)

where (1E)max is the difference between the largest and the
smallest eigenvalues of the Hamiltonian.

The sign of cAB
2 is specified by the direction of the causal

connection: cAB
2 > 0 (iA|B > iB|A) means that subsystem A

is the ‘cause’ (informational source) and B is the ‘effect’
(informational sink), while cAB

2 < 0 (i A|B < iB|A) means that
B is the ‘cause’ and A is the ‘effect’ (cAB

2 = −cB A
2 ). The

strength of the causal connection corresponds to the absolute
value |cAB

2 |: the stronger the causality is, the less |cAB
2 | is (in

the case of a constant value of total correlations, defined by
the mutual information (3)). It is noteworthy that e.g. for all
pure entangled states |cAB

2 | → ∞, this totally conforms with
the conventional view of quantum correlations as causeless
and instantaneous. However, in mixed states independence
functions do not need to be equal, therefore causality may
occur.

As it was shown in [4], the coefficient k qualitatively does
not influence the course of time, so hereafter we set k = 1 and
deal only with the dimensionless factor of (5).

Cramer [15] was the first to distinguish the principles of
strong and weak causality. The strong causality corresponds to
the usual condition of retardation τA→B of the effect relative
to the cause

cAB
2 > 0 ⇒ τA→B > 0,

cAB
2 < 0 ⇒ τA→B < 0,

|cAB
2 | → ∞ ⇒ τA→B → 0.

(7)

Without the condition (7) we have weak causality, which
corresponds only to non-local correlations. Even as they
occur in reverse time, they only relate to the unknown states
(hence the ‘telegraph to the past’ is impossible). Although
it is not very important for the scope of our work, note
that weak causality admits the extraction of information
from the future without well known classical paradoxes.
The experimental possibility of the detection of such a time
reversal phenomena was theoretically predicted by Elitzur
and Dolev [16] and has really been proved for quantum

teleportation [17, 18], entanglement swapping [19, 20] and
macroscopic entanglement, e.g. [21]. Note that we do not use
the axiom (7) anywhere in this paper.

The main result of previous quantum causal analysis
implementation consists in prediction of the degree of
entanglement fragility with respect to the different
decoherence processes of two- [4, 6] and three- [5, 7]
qubit systems. In this paper, we consider, for the first time,
a high-dimensional system with an interesting feature: it
contains an asymmetry which is based on a difference in
the physics of the objects. It makes the implementation of
quantum causal analysis a promising area for the study of
entanglement creation by JCM interaction.

3. Model of interaction

3.1. Jaynes–Cummings Hamiltonian

We consider the bipartite system, which consists of the
two-level atom, that can be found in the ground state |g〉a

and the excited state |e〉a . We also consider the quantized
mode of the field with possible energy states |0〉 f , |1〉 f ,
|2〉 f , . . . . For simplification, we set the detuning frequency
to zero (resonance case is considered).

For this system, the JMC Hamiltonian is

H =
1
2 h̄ωσz + h̄ωa†

f a f + h̄g(|e〉〈g|aa f + |g〉〈e|aa†
f ), (8)

where σz is the z-component of the Pauli matrix, ω is
the resonance frequency, a†

f and a f are the creation and
annihilation operators of the field mode respectively and
g is the dipole matrix element, which defines the Rabi
frequency. It is helpful to write the Hamiltonian of the full
system as a sum of two commuting parts: H = H0 + V ,
where H0 =

1
2 h̄ωσz + h̄ωa†

f a f is a diagonal matrix and V =

h̄g(|e〉〈g|aa f + |g〉〈e|aa†
f ) is a matrix with only off-diagonal

elements, that corresponds to the interaction the between
subsystems. The dynamics of the system is described by the
von Neumann equation

ih̄
∂ρaf(t)

∂t
= [H, ρaf(t)], (9)

where ρaf(t) is the density matrix of the whole system and
the brackets denote a commutator: [A, B] ≡ AB − B A. The
Hamiltonian (8) is time independent, so the solution of (9)
takes the form

ρaf(t) = e−iHt/h̄ρ0
af eiHt/h̄, (10)

where ρ0
af = ρaf(0) is the density matrix of the initial state at

t = 0.
In all our subsequent calculations, we set h̄ and g to unity.

For the resonance case, we have [H0, V ] = 0; so when ρ0
af is

diagonal, the solution (10) is defined only by the interaction
part V

ρaf(t) = e−iV tρ0
af eiV t . (11)
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3.2. Thermalization process

Thermalization is a process in which a system reaches a state
of thermal equilibrium due to the interaction with a bath. Let
us consider the thermal states of the field and atom.

In line with [10], the mixed thermal state for the field is
of the form

ρT
f =

∞∑
i=0

Pi |i〉〈i | f , (12)

where Pi are the probability distribution coefficients. As the
field satisfies Bose–Einstein statistics, we have

Pi =
1

1 + 〈n〉

(
〈n〉

1 + 〈n〉

)i

(13)

with mean photon number

〈n〉 =
1

eh̄ω/kBT − 1
, (14)

where kB is the Boltzmann constant and T is the temperature.
For the atom, the thermal state takes the form ρT

a =

λ|g〉〈g|a + (1 − λ)|e〉〈e|a , where (1 − λ)/λ = exp(−1E/

kBT ) (1E being the energy difference between |e〉 and |g〉).
For the resonance case 1E = h̄ω and using (14), we can
easily obtain that

λ =
1 + 1/〈n〉

2 + 1/〈n〉
. (15)

In line with [22, 23], we can introduce a model of
the thermalization process for an each subsystem as a
transformation of the corresponding matrix elements. For the
field thermalization, this transformation 3 f takes the form

|n〉〈n| f → (1 − p f )|n〉〈n| f + p f

∞∑
i=0

[Pi |i〉〈i | f ],

|n〉〈m| f → (1 − p f )|n〉〈m| f for n 6= m,

(16)

where n, m = 0, 1, 2, . . . and p f ∈ [0, 1] define the field
thermalization degree and thermal distribution coefficients Pi

could be calculated from (13).
Similarly, the thermalization process of the atom 3a can

be described by the following transformation:

|g〉〈g|a → (1 − pa)|g〉〈g|a + pa[λ|g〉〈g|a + (1 − λ)|e〉〈e|a],

|e〉〈e|a → (1 − pa)|e〉〈e|a + pa[λ|g〉〈g|a + (1 − λ)|e〉〈e|a],

|g〉〈e|a → (1 − pa)|g〉〈e|a,

|e〉〈g|a → (1 − pa)|e〉〈g|a, (17)

where pa ∈ [0, 1] defines the atom thermalization degree and
the thermal coefficient λ can be calculated from (15).

As we see, these transformations turn the corresponding
subsystem into a mixed thermal state and also destroy
correlations with another subsystem.

It should be noted that the action of the thermalization on
both the field and the atom turns the system into a separable
state ρT

a ⊗ ρT
f , which is approximately equal (as ω � g in (8))

to usual thermal state ρT
af = exp (H/kBT )/Tr[exp (H/kBT )].

3.3. Time evolution model

We consider the case in which the atom and field are involved
in two processes: the first is the interaction with each other by
JCM and the second is the interaction of one subsystem (atom
or field) with the environment (bath) by thermalization.

In line with [11], let us consider the following step-wise
evolution:

ρ0
af → ρ0∗

af = e−iV 1tρ0
af eiV 1t

→ ρ1
af = 3x [ρ0∗

af ] →

→ ρ1∗

af = e−iV 1tρ1
af eiV 1t

→ . . . ,
(18)

where 3x corresponds either to the transformation 3 f (16) or
to the transformation 3a (17). As we see, the evolution from
ρi

af to ρi∗
af corresponds to the interaction by JMC during a small

period 1t in line with solution (11). The transformation from
ρi∗

af to ρi+1
af corresponds to the weak instantaneous interaction

between one of the subsystems with an environment. Note that
we should set the thermalization degree in 3x to be rather
small (px � 1).

As a result, we can sequentially obtain a set of {ρn
af},

which corresponds to the states of the atom–field system at
t = n1t . Then we can obtain the evolution of causality and
entanglement, which is the main object of study in the rest of
this paper.

It is worth noting that, in practice, the thermalization
process acts on both subsystems simultaneously. In our
consideration, we suppose that thermalization acts on one
subsystem much stronger than on another subsystem: e.g. in
the case of only field thermalization, we consider p f � pa

so we can neglect 3a transformation. Such an novel model
helps us to understand the role of causality in the evidently
asymmetric system.

4. Computation results

4.1. Evolution without thermalization

First let us consider the evolution of the system without
an influence of thermalization, which corresponds to the
solution (11) or the step-wise evolution (18) with p f (a) = 0
in the transformation 3 f (a).

In [10], a JCM evolution was considered of the initial
state ρ0e

af = |e〉〈e|a ⊗ ρT
f . It has been found that the initial

purity of the atom involves an appearance of entanglement
in such a mixed system, but only the lower bound of this
entanglement has been obtained.

The main computational problem for that system is
the infinite dimensionality of the field matrix ρ f . For the
thermal distribution (or very close to it), this problem could
be solved by a confinement of the field matrix. Indeed, it
is evident from equation (13) that Pi is an exponentially
decaying series so that the contribution of the matrix elements
Pi |i〉〈i | f at sufficiently high i vanishes. Therefore, in our
calculations, we can confine series Pi at i = Nmax − 1 and

estimate the occurred error as α =
〈n〉−

∑Nmax−1
n=0 [n Pn ]
〈n〉

(this is an
energy amount which we have lost by the confinement). For
our computations, we chose Nmax so that α < 1%.

Using the density matrix ρaf(t) (11), we can compute the
reduced atom and field density matrices: ρa(t) = Tr f ρaf(t)
and ρ f (t) = Traρaf(t), where Tr f and Tra denote partial traces

4
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Figure 1. Negativity of ρe
af(t) (thin line) and ρ

g
af(t) (bold line) at

〈n〉 = 10 .

with respect to the corresponding subsystems. From these
three matrices we can obtain von Neumann entropies of the
whole system Saf(t) and two subsystems Sa(t) and S f (t) by
equation (1). Then we can compute mutual information (3)
and the independence functions (2), which determine the
course of time (5). As we shall see further, generally i f |a(t) >

ia| f (t), so we consider ca f
2 (t) to deal with the positive values.

We use the negativity as a standard measure of bipartite
entanglement, which is defined as (e.g. [24])

N [ρaf] =

∑
i

|µi |, (19)

where µi are the negative eigenvalues of ρ
Ta
af and Ta denotes

the partial transpose with respect to the first atom. According
to equation (19), the maximal entanglement corresponds to
N = 0.5.

We consider two initial states: ρ0e
af = |e〉〈e|a ⊗ ρT

f and

ρ
0g
af = |g〉〈g|a ⊗ ρT

f where the atom is either in an excited or
a ground pure state and the field is always in the thermal
mixed state. Their dynamics are denoted as ρe

af(t) and ρ
g
af(t),

respectively.
In figure 1, the negativity dynamics of ρe

af(t) and ρ
g
af(t)

at 〈n〉 = 10 are shown. As it was predicted in [10] that
entanglement appears at the beginning of an interaction and
then never drops to zero. It is notable that there is some
average value of negativity, which is retained during the whole
evolution process (except for the very short period at the
beginning).

Other features of the system, such as the mutual
information I and the causality c f a

2 , also have analogous
dynamics; so it seems logical to estimate their average values
as functions of the mean photon number 〈n〉. We have chosen
time series 1506 t 6 400 with the time step dt = 0.5 and
have computed the average values N(av), I(av), i f |a(av), ia| f (av),
and c f a

2(av) of the negativity, mutual information, both the
independence functions and the course of time, respectively,
for the set of mean photon numbers 16 〈n〉6 80 and for
the same initial states (ρ0e

af and ρ
0g
af ). The tmin = 150 has

been chosen to avoid getting in a period of transfer to the
quasi-stationary state. The time step dt = 0.5 has been chosen

as it does not correspond to any system eigenfrequencies.
Together with the average values, we have stored the minimal
and maximal values of the characteristics at 〈n〉> 10 to
observe the corresponding sizes of deviations from averages
at rather high temperatures.

The results of such averaging are presented in figure 2.
The general feature for all parameters is that the higher the
〈n〉 is, the closer the average values for two different initial
states are. Moreover, the extent of the fluctuation for all the
parameters decreases with the temperature growth.

Figure 2(a) demonstrates the dependence of negativity
N(av) on 〈n〉. It is expectable that for an initially pure
excited state of the atom, entanglement decreases with the
temperature rise, but it surprisingly does not vanish. It tends to
an asymptotic value, as well as the curve for the initial ground
state. It is remarkable that for the initial ground atom state.
there is an amplification of entanglement with the growth
of the temperature, so in this case the temperature plays a
constructive role for the entanglement generation.

Figure 2(b), which corresponds to the dynamics of
information I(av), demonstrates features similar to figure 2(a).
This was quite expected, as both the entanglement and mutual
information are measures of the correlations in the system.

Figure 2(c) demonstrates that i f |a(av) is always larger than
ia| f (av), so the correlations between the atom and field are
asymmetric and the field always corresponds to the cause
(source of information) while the atom always corresponds
to the effect (sink of information). It is very intriguing that
at rather high temperatures, both the i f |a and ia| f are always
positive, while the negativity N is also greater than zero. It
means that the considered system turns out to be ‘classical’ in
the entropic sense but is still entangled.

Finally, figure 2(d) shows that for both the initial states,
causality amplifies with 〈n〉 growth. It is quite expected for
the initial state ρ

g0
af as irreversible information flow can be

associated with the energy flow running from the field to the
atom. But for the state ρe0

af , this result is non-trivial and does
not conform with intuition. Another interesting result is that
for ρ

g0
af , there is an amplification of both the causality and the

entanglement as the temperature increases. Indeed, causality
needs mixedness, which is usually harmful for entanglement,
but in this situation mixedness of the field turns out to be a
necessary condition for the entanglement appearance.

From figure 2 we can also estimate some asymptotic
values of the correlations at 〈n〉 � 0 for both the initial states:
N(as) ' 0.07 (which is 14% of the maximum value), I(as) =

0.8 bit (which is 40% of the maximum value). The system
turns out to be entangled, classical in the entropic sense and
information-wise is asymmetric: the field state is the cause
with respect to the atom state.

4.2. Evolution with thermalization

Now let us consider a situation when one of the two
subsystems is influenced by an environment with the
thermalization. Take the two states: ρTf

af (t) and ρTa
af (t), which

have been obtained from the step-wise evolution (18) with
3x = 3 f and 3x = 3a respectively. For the initial state,
we have chosen ρ0

af = ρe0
af with 〈n〉 = 1. This state is quite

interesting because it is energy-wise symmetric but, as we

5
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Figure 2. Time averaged characteristics and corresponding minimal and maximal values (only for 〈n〉> 10) as functions of 〈n〉 for
different initial states: ρe0

af (squares and right vertical lines) and ρ
g0
af (circles and left vertical lines). Averaged characteristics: (a) negativity

N(av); (b) mutual information I(av); (c) independence functions i f |a(av) (empty symbols) and ia| f (av) (filled symbols); and (d) causality c f a
2(av).

have seen before, interaction by JCM induces a causality
(information-wise asymmetry).

The results for 1t = 0.1 at p f = 0.01 and pa = 0.01
are presented in figure 3. From figure 3(a) we see that the
entanglement in both cases is decreasing (as is quite expected)
but in case of the field thermalization it decays generally
more intensively than in the case of atom thermalization.
The causality dynamics, which is shown in figure 3(b),
demonstrates an amplification of the causal connection.
Also, there is a simple relationship between entanglement
and causality: the entanglement is weaker in the state with
stronger causality.

5. Discussion

The first result which has been obtained in section 4.1 is
that the average level of entanglement created by the JCM
interaction between an initially pure atom and mixed thermal
field at high temperatures does not depend on temperature
and has a rather high level ('14% of maximal value for
negativity). So e.g. if we have an atom–field system in totally

thermal separable state ρT
a ⊗ ρT

f and then measure the atom
state—we obtain a system in state |e〉〈e|a ⊗ ρT

f or |g〉〈g|a ⊗

ρT
f . If we isolate both subsystems from the environment and

let them interact with each other by the JCM model, after
some period they become entangled. Finally we may say that
in the considered case, the measurement is a source of purity
and causes high-temperature entanglement. Such a source of
entanglement can likely be used in different applications.

The second result corresponds to causal analysis
implementation. As it is shown in [4, 5], mixedness is
a necessary condition for quantum causality appearance.
In [4–7] different situations have been considered where
decoherence induces causality. In section 4.1, we considered
the case where causality appears in the state, which had
already been mixed at the stage of state preparation, when
the system was open. Then we isolated the system from
the environment and let it evolve in accordance with the
time-independent JCM Hamiltonian. During this evolution,
the mixedness of the whole state kept its value but the
causality changed in time, although it retained a definite
direction: the field was the cause (source of information)
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Figure 3. Negativity N (a) and causality c f a
2 (b) of states ρTf

af (t) (thin lines) and ρTa
af (t) (bold lines).

and the atom was the effect (sink of information). With
a rise of the initial temperature of the field, the average
strength of the causality amplified. It totally corresponds to
the fact that the field is an infinite dimensional subsystem and
is able to keep more information than the two-level atom.
Also it is remarkable that the entanglement created by the
JCM interaction corresponds to ‘classical’ correlations in the
entropic sense. Such a peculiarity is typical for macroscopic
entanglement observations [21].

To explain such a situation in section 4.2 we should
realize what the thermalization process is. It can be considered
touching the global source of information (which the bath
is). After this touching, the corresponding subsystem not
only loses correlation with another subsystem (which does
not connected with the bath) but also tends to be a cause
for it. For our system, the process of correlation destruction
always corresponds to |c f a

2 | → 0. However, in the case of
the atom thermalization, the environment tries to inverse the
existing causal connection from the field to the atom, so in
this situation c f a

2 generally decreases slowly, rather than in
the case of the field thermalization when this thermalization
induces causality in the same direction as the JCM evolution
and amplifies it. As an asymmetry is harmful for the
entanglement, it is quite expected that negativity decays more
intensively in the case of the field thermalization.

6. Conclusion

We have considered the high dimensional system which
consists of the two-level atom and infinite-level resonance
quantized mode of the field. Dynamics of such a system is
described by JCM with Hamiltonian (8). We have studied
different characteristics of an analytical solution (11) of
corresponding von Neuman equation (9) for the two different
initial states. In agreement with Bose et al [10], we have
obtained that a JCM interaction between the atom in a
pure state with the field in a thermal mixed state generates
entanglement. As the initial field temperature increases, the
average value of entanglement tends to some asymptotic value
(' 14% of the maximal value as measured by negativity).
In the case of an atom in the initially ground pure state,
the average entanglement grows as the initial temperature of

the field increases. As purity of the initial atom state can be
obtained by its measurement, the latter could serve as a source
of high-temperature entanglement.

The above conclusion seems to not be very surprising and
might have been obtained before, while the below ones are
non-trivially new.

The key result is that the considered states are
information-wise asymmetric: the field is the cause and
the atom is the effect under any conditions, while the
strength of the causal connection amplifies as the field initial
temperature increases. It is interesting that states turn out to
be ‘classical’ in the entropic sense in spite of an entanglement
presence. Adding a thermalization process to one of the
subsystems to the JCM evolution results in entanglement and
information decay with an amplification of the causality. In
the case of atom thermalization, entanglement decreases not
so intensively as in case of the field thermalization, which
can be explained by the opposite influence on causality. The
JCM evolution with the atom thermalization induces a lesser
asymmetry than the JCM evolution with the field asymmetry.

Finally it should be mentioned that the last result seems to
be opposite to the results of [6, 7], where the decoherence of
an initially asymmetric two-qubit entangled state (with finite
causality strength) was considered. A decoherence process
acting against the original causality destroys entanglement to
a greater extent than such a process acting along this causality.
The fact is that in this paper, we have considered the process
which creates causality and entanglement in an initially
separable asymmetric state and have uncovered a destructive
role of the information-wise asymmetry for entanglement.
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