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Abstract

It is proved that the (local) causal structure of the (at) Minkowski space-
timeM0 can be (metrically) de�ned by each of the three (curved) worlds M;F; L
(and there are no other options to represent M0 in such a way). M;F; L are
the respective Lie groups supplied by a suitable bi-invariant Lorentzian metric:
m = u(2); f = u(1; 1); l = osc as Lie algebras.

The three worlds might be viewed as (the most symmetric) general relativistic
space-times. They are supposed to substitute M0 (like a haudred years ago the
Newtonian world had to give up its leading role whenM0 emerged). Now, there are
three Hamiltonians to drive evolution of a physical system (a \Russian Troika").

The �ndings seem to set up quite a new prospective to develop the "Particles
and their Interactions" theory.

Key words and phrases: symmetric spaces, relativity, Segal's chronometric the-
ory, quantum-mechanical hidden variables.
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Main Part
Let M0 stand for the Minkowski space-time, M is for the unitary group U(2):
The image c(M0) of the Caley map c ([Se76], [Le95]) is an open dense subset

of M . The family fCyg is in M0 but it also determines a bi-invariant cone �eld
on M ; here Cy = y + C, C is the light cone in Minkowski space-time.

Future sets are canonically de�ned in a universal cover ~M . Recall the
(fractional-linear) G-action on M :

g(z) = (Az +B)(Cz +D)�1

here an element g (with 2 by 2 blocks A;B;C;D) is from G = SU(2; 2). This
action lifts canonically to a ~G -action on ~M (which preserves the causal structure).
Proofs of all the above statements can be found in [Se76, PaSe82a].

Theorem 1 ([Ad76], [Se76]). If a bijection f of ~M preserves the causal struc-
ture, then f is de�ned by some ~g from ~G.

It is known ([PaSe82a, PaSe82b]) that to model particles on ~M , one can start
with a (compact!) world M (in view of "automatic periodicity" results).

The universal cover ~P covers the (scale-extended) Poincare group P twice.

Theorem 2 ([PaSe82a]). A stability subgroup (of an event x from ~M) is
isomorphic to ~P . There is a commutative diagram (an intertwining relation be-
tween the ~P action in M and ~P action in M0, the latter chosen in the form of
u(2)).

The following is a well-known result.

Theorem 3. A metric on a Lie group N is bi-invariant if and only if the
(respective) form in the Lie algebra n is invariant.

Remark 1. An invariant non-degenerate form in a simple Lie algebra has to be
proportional to the Cartan-Killing form.

Theorem 4 ([GuLe84]). In dimension four, there are exactly three non-
commutative Lie algebras admitting non-degenerate Lorentzian invariant form:
m = u(2); f = u(1; 1); l = osc:

Remark 2. The �rst two cases are well-known (there are no other non-Abelian
four-dimensional semi-simple Lie algebras). It was a certain surprise to �nd a solv-
able algebra in that list (it can formally be de�ned by the following commutation
table: [l2; l3] = l1; [l2; l4] = l3; [l4; l3] = l2):

Quantum-mechanical wave functions are sections of (certain) vector bundles
over ~M ; "induced bundles" since they are determined by ~G representations, in-
duced from �nite-dimensional representations of ~P . For a scalar particle, the �ber
is complex one-dimensional, etc.

In Segal's chronometry, the entire list of known particles is derived mathemat-
ically. One chronometric particle (the "exon") has not yet been experimentally
identi�ed (see [Se91] or a survey [Le95] for the details on the above).
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The "architecture" of the scalar bundle is determined by a certain (conformal-
ly covariant) second order di�erential operator ("curved wave operator", compare
to the "at wave operator", a standard one), see [PaSe82a] and [Le04] for more
details.

The scalar bundle (together with known �nite-dimensional ~P representations)
determines higher spin bundles (see [PaSeVo87, Se98, SeVo98]).

For an explicit description of a curved wave operator, one other well-known
result (adjusted to the current case) is instrumental.

Theorem 5 (see [Or81]). In a four-dimensional conformally at pseudo-
Riemannian space of constant scalar curvature R if T is the Laplace-Beltrami
operator, then T +R=6 is conformally covariant.

To explicitely present the three conformally covariant wave operators, recall
from [PaSe82a] the following basis Lij (with Lij = �Lji) in su(2; 2) :

[Lim;Lmk] = �emLik;

where the 6-tuple (e
�1; e0; e1; e2; e3; e4) equals (1; 1;�1;�1;�1;�1):

The G�action results in vector �elds Lij (non-boldface) on M with the
opposite (compared to the just stated) right sides in the commutation table.
X0 = L

�10; X1 = L14 � L23; X2 = L24 � L31; X3 = L34 � L12 form a left-invariant
orthonormal frame on M = U(2): In M�case, the scalar curvature is 6 (cur-
vature computations are real quick in all cases treated here, since the metric is
bi-invariant, see [Le85]). Now, the conformally covariant wave operator ("origi-
nating from the M-viewpoint") is

X0
2 �X1

2 �X2
2 �X3

2 + 1;

as given in [PaSe82a].
Globally, the world ~M is R1 times S3, where S3 is represented by the group

SU(2):
The world F is the universal cover of U(1; 1), it is R4, topologically. Its rel-

atively compact form, a four-dimensional orbit in U(2), is de�ned by four or-
thonormal vector �elds H0; H1; H2; H3 on U(2); where H0 = L

�10 � L12; H1 =
�L

�12 + L01; H2 = L02 � L
�11; H3 = L34: It is an easy exercise to show that the

four �elds form an u(1; 1)�subalgebra of su(2; 2). The scalar curvature is now
negative two (a routine calculation),

(H0)
2 � (H1)

2 � (H2)
2 � (H3)

2 � 1=3

is one more conformally covariant wave operator.

The third world, L is R4, topologically. Again, its relatively compact form, a
four-dimensional orbit in U(2), is de�ned by four vector �elds l1; l2; l3; l4; where

l1 = L
�10 + L04 + L

�11 + L14; l2 = (1=2)(L
�12 + L24 + 2L03 + 2L31);
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l3 = (1=2)(L
�13+L34+2L02+2L12); l4 = (1=8)(�5L

�10�3L�11+3L04+5L14+4L23):

One can verify the (above stated) commutation table for the oscillator Lie algebra.
The expression for the metric is the one shown below for the wave operator.

The scalar curvature is now zero (as shown in [Le86] where this world has been
studied separately; all together the three worlds have been discussed in [Le85]).

The respective conformally covariant wave operator is

2l1l4 � (l2)
2 � (l3)

2:

Using Table I from [SeJa81], one proves that the three worlds share the same
light cone at, say, the neutral element of U(2) (which means at the origin of the
Minkowski world). Since the action remains the same (the linear-fractional one),
the three worlds have to share the same cone �eld globally.

Remark 3. All three Hamiltonians (a "Russian Troika") drive the (quantum-
mechanical) evolution of a particle. Currently, the L- and F -aspects are yet ig-
nored by the "standard" science (that is why "hidden variables" are mentioned
in key words and phrases).

The present �ndings have been �rst made public at the special meeting of the
"Newton-Einstein-Segal" Seminar (Boston University, August 30, 2003, it was 5
years since I. Segal has passed away). Later, the talk has been given at the Third
International Conference "East - West on Neva Banks" (held October 9-11, 2003,
at the Saint Petersburg University, Russia).
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