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Abstract. It is shown that the force in relativistic mechanics is not only the cause of acceleration 
of particle relative to an inertial frame of reference, but also the cause of change of the course of 
time along the particle’s trajectory. Therein lies the physical content of the dynamical principle 
underlying the special theory of relativity (relativistic mechanics). The general formula for the 
relative course of time between the points lying on the trajectory of motion of particle under the 
action of a force field in an inertial reference frame is derived. The applications of the theory 
developed to homogeneous fields - to the field of gravity and electromagnetic field, and also to the 
gravitational field produced by a point mass particle are considered. Physical properties of the state 
of imponderability of particle in an external force field are investigated. It is noted that the 
change in the course of time in a force field is in no way connected with the change in 
space-time metric and is a direct consequence of the causality principle of relativistic 
mechanics. 

 
1. Introduction 

 
Time is among the most common concepts, which are used constantly both in everyday life and 

in science. This is because all the events and material processes in the world happen in space and 
develop in time and, hence, the laws that govern space-time connections are the most general and hold 
for all the forms of matter. Nevertheless, time remains one of the most mysterious concepts of physics; 
its physical essence is not adequately revealed up till now [1-4]. The concept of time with difficulty 
yields to logical analysis. 

From the point of view of common sense the essence of time is that time characterizes the 
duration of events and processes, indicates their natural sequence, at which the present, going away to 
the past, gives place to the future.  

I. Newton gave a clear-cut characteristic of the concept of time, to which the majority of 
physicists adheres: ”The absolute, true, and mathematical time in itself and by virtue of its nature flows 
uniformly and regardless to any other object”. Though, according to Newton, time flows equally and 
uniformly and does not depend on the processes, occurring in the world, the daily experience speaks in 
favour of the fact that the course of time is not uniform. Depending on circumstances in our history, it 
seems to us that time either flies swiftly or hangs heavy on our hands; sometimes it even changes 
suddenly, by leaps. In connection with these speculations the question arises of whether the subjective 
sensations of non-uniformity in the course of time familiar to everyone have an objective basis. 

In Newtonian mechanics time is of an absolute character, it does not change as one passes from 
one inertial reference frame to another and represents merely a parameter, whose change at the will of 
explorer results in the change of state of a mechanical system in accordance with the equation of 
motion. 

In relativistic mechanics time remains a parameter describing the development of system. But 
now time and space are intimately linked with each other to form a single whole – the 4- dimensional 
space-time. In going from one inertial frame of reference to another time gets entangled with spatial 
coordinates, so that time in one reference frame represents a ”mixture” of time and coordinates in the 
other. Time ceases to be universal, the same in all inertial reference frames; it takes on a relative 
character. 
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The indissoluble association of time and space takes on special importance in the light of the 
concept of physical field, which was called by Einstein the most important discovery in physics after 
the times of Newton. According to this concept, the occurrence in space of a force field means that 
space turns into a physical environment, which is capable to interact directly with other bodies and 
gains, thus, physical properties, becoming an active participant of physical processes. In view of the 
fact that space and time are indissolubly related to each other, the presence of a force field in some 
area of space must necessarily result in the appearance of physical properties of time caused by the 
motion of body in this area. 

Thus, from the synthesis of the notion of space-time and of the idea of physical field it follows 
with necessity that the course of time in a given region of space should depend on physical processes 
in this region, i.e. time, as well as space, should have physical properties [5-8].  

It should be emphasized that in special theory of relativity (STR) time and spatial coordinates are 
independent and formally equal in rights quantities, which determine the position of elementary events 
in space-time. On the other hand, time stands out in relation to spatial coordinates. The special role of 
time is due, from the viewpoint of geometry, to the pseudoeuclidity of geometry of the 4-dimensional 
space. From the physical point of view, it is associated with the dynamical principle (causality 
principle), according to which the state of motion of a physical system at an instant of time t  uniquely 
defines its behaviour at the next instant of time 0+t . The significance of dynamical principle lies in 
the fact that it relates the temporal evolution of system to the physical processes caused by force fields 
and in doing so it allows one to determine the course of time in the system, its possible dependence 
upon the character of physical processes, and not just the sequence of events and their duration. 

The idea about the existence of the physical properties of time belongs to N. Kozyrev [9]. By 
introducing into mechanics an additional parameter taking into account the directivity of the course of 
time, Kozyrev has formulated causal (asymmetrical) mechanics from which it follows that time has 
physical properties. According to the results of theoretical and experimental investigations conducted 
by Kozyrev and his followers [9-13], events can proceed not only in time, but also with the help of 
time, information being transmitted not through force fields, but via a temporal channel, and the 
transfer of information happens instantaneously. The appearance of additional forces, associated with 
the physical properties of time and capable to fulfill work, testifies that time can serve as a power 
source.  

In the papers by I. Eganova [12] and M. Lavrent'ev and I. Eganova [13] the problem is stated of 
direct experimental research of the physical properties of time with the purpose to ascertain the 
relations of a new type between phenomena and to discover new methods of changing the state of 
substance. In [14] O. Jefimenko investigated the dynamical effect of the slowing-down of time. 

According to [6-8], the conclusion that physical properties of time exist follows strictly from 
relativistic mechanics, without introducing any additional hypotheses. The physical properties of time 
are of purely dynamical nature: their existence results from dynamical principle. The availability of 
physical properties of time is manifested in that time has a local inhomogeneity: its course along the 
trajectory of motion of a point particle in a force field is continuously changed, and this change in the 
course of time is a result of the action upon the particle of a force field in the inertial reference frame, 
in which the motion is considered.  

In view of fundamental importance of the problem considered, we shall discuss the physical 
content of the local dynamical inhomogeneity of time in more detail. 
 Let us consider the motion of a classical point particle under the action of a force field in the 
inertial reference frames K  and K ′ , moving relative to each other. The Cartesian coordinates 
connected with the reference frames are assumed for definiteness to be oriented in such a manner that 
the z,y,x -axes of the frame K  are parallel to the z,y,x ′′′ -axes of the frame K ′ , the x -axis and the 
x′ -axis coincide with each other, and the reference frame K ′  moves with a velocity 0V  relative to the 
K -frame along the x -axis. Denote by Adl  the length of a path section in a vicinity of a point A in the 
reference frame K , which the particle covers for the time Adt , and by Ald ′  and Atd ′  the corresponding 
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quantities relating to the reference system K ′ . The quantities Atd ′  and Adt  are connected with each 
other by equality [6]: 
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 characterizes the change in the course of time in the vicinity of point A on the 

particle’s trajectory in the reference frame K ′  as compared with the reference frame K . As is seen 
from (1), if during some interval of time the x -component of velocity of a particle is changed 

( const)t(ux ≠ ), on this time interval the relative course of time is changed as well ( const
dt
td

A

A ≠
′

). If 

the particle moves on a path section uniformly and rectilinearly, i.e. by inertia ( const)t( =u ), the 

relative course of time on the path section is remained constant: const
dt
td

A

A =
′

. Inasmuch as the change 

in the velocity of particle in an inertial reference frame is conditioned, according to the main postulate 
of classical mechanics, by the action on particle of a force connected with some physical field, hence, 
the force acting on particle is the reason of change in the course of time along the particle’s trajectory. 

According to (1), the gist of the phenomenon of local dynamical inhomogeneity of time is that 
the quantity Atd ′  depends not only on Adt , but also on the particle’s velocity in the vicinity of the point 
A. As the change in the particle’s velocity is determined by the force influence on the particle, it 
follows from here that the force acting on a particle in some inertial reference frame is the reason for 
change in the course of time along the particle’s trajectory. In other words, the dynamical 
inhomogeneity of time means that the different instants of time on the time axis prove to be physically 
non-equivalent when the particle moves in a force field. 
 Let's go over from point A to some other point B , also lying on the particle’s trajectory, and 
write down for it the relationship analogous to (1): 
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B

A

Ax

Bx

B

A

td
td

c
tuV

c
tuV

dt
dt

′
′






 −






 −

=

2
0

2
0

)(
1

)(
1

.  (2) 

Quantities 
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dt  and 
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 characterize the relative course of time between the points A and B  on the 

particle’s trajectory in the reference frames K  и K ′ , respectively. In virtue of (2), if )t(u)t(u BxAx = , 

then 
B
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B

A

td
td

dt
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′
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= , i.e. the relative course of time between points A and B  in the K -frame coincides 

with that in the K ′ -frame. To change the relative course of time between two points in one inertial 
reference frame as compared to the other, it is necessary that a force should act on the particle on the 
corresponding path section. According to (2), BA dtdt ≠  at BA tdtd ′=′  if only the particle’s velocities at 
points A and B  are not identical in magnitude. In this case, if BA ldld ′=′ , then, generally speaking, 
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BA dldl ≠ , i.e. to equal distances, which the particle passes in different regions of space in reference 
frame K ′ , there correspond different distances traversed by the particle in reference frame K . This can 
be caused by both the different course of time at points A and B  and the different velocities of particle 
at these points. In this connection the questions arise: How can these factors be separated from each 
other? How can the relative course of time be determined between the different points of space being 
considered in the same inertial reference frame? 
 Relying on the reasoning given above, it is natural to suppose that the change in the course of 
time at the points lying on the particle’s trajectory can be caused only by the action of a force field on 
the particle. Indeed, in the absence of force field, when the particle moves by inertia, there are no 
reasons for changing the course of time. Let's go over from the inertial reference frame K , in which the 
motion of a particle takes place under the action of a force field, to such a noninertial reference frame 
K~ ′ , in which the inertial force is completely compensated for by the force field action at that point of 
space where the particle is at rest. Apparently, in the K~ ′ -frame the particle moves by inertia, i.e. it is in 
a free state (imponderability state) [15,16]. Since in this state the force effect on the particle is absent 
and, thus, the reason of changing the course of time is lacking, in this reference frame the course of 
time should be uniform at the point where the particle is placed. By choosing in the K~ ′ -frame at the 
point where the particle is placed two equal in magnitude intervals of time corresponding to two 
different points A and B  lying on the particle’s trajectory in the inertial reference frame K , and by 
performing then the inverse transition from the reference frame K~ ′  to the K -frame, we may define the 
magnitude of relative course of time between points A and B  in the reference frame K . 
 In this paper, on the basis of the reasoning above, the relative course of time is considered 
between the points lying on particle’s trajectory in an inertial reference frame in uniform external field, 
and also in gravitational field created by a material point. 
 Note that equality (1) is one of the relationships entering into the Lorentz transformations for 
coordinates and time, and consequently it is not new. A new point is that an analysis of this 
relationship, as applied to the motion of point particle in a path under the action of a force field, is 
given and on its basis a number of physical consequences is derived concerning the course of time, 
which were not discussed in literature till now and were formulated for the first time in [5-8]. These 
consequences are important not only for elucidating the physical nature of time, but also for a deep 
insight into the physical content of relativistic mechanics, and thus they deserve consideration in more 
detail. 
 According to A. Logunov, the main content of special theory of relativity (STR) consists in that 
"all physical processes proceed in space-time possessing pseudoeuclidean geometry" ([4], p.26). 
Undeniably, from the mathematical (geometrical) point of view, in the formulation presented above 
the essence of STR is expressed correctly, still the physical content of relativistic mechanics, the 
physical essence of dynamical principle underlying it, is that the force is not only the reason of 
particle’s acceleration in an inertial reference frame, but also the reason of the change in the 
course of time along particle’s trajectory. It should be emphasized that existence of a link between 
the force and the course of time along particle’s trajectory follows directly from the fact that space and 
time are connected with each other to form a single 4-dimensional space. 
 Thus, the fundamental difference between relativistic mechanics and Newtonian one lies not 
only in the fact that in Newtonian mechanics time is of an absolute character and does not change in 
going over from one inertial frame of reference to another, and in STR it ceases to be identical in all 
inertial reference frames. In relativistic mechanics time with necessity acquires physical properties, 
which are conditioned by the action on particle of a force connected with a physical field. As a result 
of the force action, the course of time is continuously changed along the particle’s trajectory. 

In connection with the phenomenon of dynamical inhomogeneity of time, let us consider 
equality 
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with dx and xd ′  being the increments of coordinates in the reference frames K  and K ′ . It would 
seem, equality (3) points to the existence of the dynamical inhomogeneity of spatial coordinates 
similar to the time inhomogeneity. Indeed, according to (3) the distance dx, traveled by a particle in 
the K -frame, depends not only on the distance xd ′ , which the particle passes in the K ′ -frame, but also 
on the instant of time t ′ . This dependence cannot be treated, however, as a manifestation of the 
dynamical inhomogeneity of spatial coordinates. Formula (3) is a trivial consequence of kinematics: it 
expresses the simple fact that the distance traveled by particle depends on its velocity, which may 
change with time (as a result of the action of force). Really, in classical mechanics, on the basis of 
Galileo transformations, we have successively:  

( ) ,0 dtVudtudx xx +′==   .dtuxd x′=′  
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Up to the factor γ  last formula coincides with (3). In the case of relativistic mechanics we have 
analogously: 

tdtuxddttudx xx ′′′=′= )(,)( . 
From here, using the velocity addition law and Lorentz transformations for time, we arrive at formula 
(3). 

Thus, as distinct from spatial coordinates, time in relativistic mechanics may be deformed (i.e. 
time scale may change) under the action of an external force. It should be emphasized that the active 
role of time in dynamics is due to the dynamical principle: the latter is formulated in terms of time, not 
of spatial coordinates. 

Let us enumerate the main results presented in the subsequent sections of the paper. 
 In section 2 a general formula is given for the relative course of time between the points lying 
on particle’s trajectory in a force field in an inertial reference frame. It is demonstrated that a 
consistency condition is fulfilled for the theory of the change of the course of time in a force field 
developed in the paper. 
 The application of general theory to homogeneous fields - to electric field and the field of 
gravity is considered in section 3. It is noted here that, because of relativistic corrections to the 
equation of motion of particle, the homogeneous field cannot be compensated for completely by 
inertial forces. The imponderability state of relativistic particle in homogeneous field possesses 
stability: if we remove the particle from the state of imponderability with the help of an external force 
and then leave it to its own devices, the particle returns to the imponderability state. 
 Section 4 is devoted to the investigation of the course of time and imponderability state in 
homogeneous electromagnetic field. The formula is deduced for the relative course of time along 
particle’s trajectory in arbitrary homogeneous electromagnetic field in nonrelativistic approximation. 
 In section 5 the application of general theory is considered to the motion of particle in the 
gravitational field created by mass point. The quasiinertial reference frames freely falling on a force 
center in different radial directions are noted to be physically nonequivalent to each other. 
 In final section it is emphasized that research on the problem of time is of fundamental 
importance in science. 
 

2. The course of time and the state of imponderability of particle 
 
 Let us transform the equation of motion of classical point particle of mass m  in an external 
force field t),,( rrFF != , written in an inertial reference frame K , 
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 Fr =!!m , (4) 
with )(trr =  being the radius-vector of the particle at the instant of time t , to the reference frame K~ ′  
moving arbitrarily relative to the reference frame K . Denote by )t(00 rr =  and )t(rr ′=′  the radius-
vector drawn from the origin of the K - frame to the origin of the K~ ′ - frame and the radius-vector of 
the particle in the K~ ′ - frame, respectively. The r  and r′  are related by equality 
 )t(0rrr +′= . (5) 
Coordinate axes of the reference frame K~ ′  are supposed for convenience to be parallel to the 
corresponding coordinate axes of the K -frame. This will allow one to consider the coordinate unit 
vectors lying on axes of the frames K~ ′  and K  to be not varied with time. From (5) follow the 
transformation laws for velocities and accelerations: 
 )t(0rrr !!! +′=  и )t(0rrr !!!!!! +′= . (6) 
Substituting (5) and (6) into (4), we arrive at the equation of motion of particle in the reference frame 
K~ ′ : 
 Fr ~=′!!m , (7) 
where  
 )(~

000 tm-t)(t),(t),( rrrrrFF !!!! +′+′= . (8) 
Note that inertial force inF , )(0 tm- rFin !!= , does not depend upon quantities r′  and r′! , which are the 

dynamical variables of the particle in the reference frame K~ ′  and dependent only on time t . 
Consequently, the force inF  represents a homogeneous field varying with a time.  
 The expression for the force F~ , entering into the right-hand side of (7), can be expanded in a 
Taylor series in r′  and r′! . Assuming quantities r′  and r′!  to be small as compared to )t(0r  and 

)t(0r! , accordingly, and retaining only the terms of the first order in magnitude, we can obtain: 
 ,t)(t),(t), 1000( FFrrrrF +=+′+′ !!  (9) 
where 
 ),(( 0000 tt)(t),(t), FrrFF ≡= !  

 (t)(t),    t),,t),,()( 0011 при( rbrarrFbaFrrF ba !!! ==′′≡∇′+∇′= . 
Let us require that the following condition be fulfilled: 
 )t()t(m 00 Fr =!! . (10) 
With (9) and (10) the equation of motion (7) can be written as: 
 1Fr =′!!m . (11) 
It is seen from expression for 1F  that 01 =F  at 00, =′=′ rr ! . This means that the particle being at rest 
at the origin of the reference frame K~ ′  is free: in the state 00, =′=′ rr !  the force of inertia is 
completely compensated for by the external force F . If the force F  is the force of gravity, the state 
under study represents an imponderability state of particle [15,16]. This term (the imponderability 
state) we retain also in the case that F  describes an arbitrary force field. 
 It should be emphasized that though in the reference frame K~ ′  the imponderability state of the 
particle is realized, the reference frame essentially differs from the inertial one. The fundamental 
distinction between them is that in inertial reference frame the particle, being free at one point of 
space, remains free at any other point (i.e. the force effect on particle is lacking in the whole space: 

0≡F ), whereas in the reference frame K~ ′  the force effect on particle for arbitrary external force field 
t),,( rrF !  is lacking only at point 0=′r , 0=′r!  (see (9)-(11)). However, one always can indicate such 

a region of space-time, in which the forces of inertia acting on particle in the K~ ′ -frame approximately 
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compensate for the forces acting on it on the part of external force field, so that in this space-time 
region the K~ ′ -frame may be considered approximately as an inertial frame. 
 To circumstantiate, in what sense and with what accuracy the K~ ′ -frame is the inertial one, we 
shall represent the external force, acting on the particle, as a sum of two components: the force 

FrrF ≡t),,( ! , which further will be partly compensated for by inertia force, and an additional 
force f , which for simplicity is taken as being constant ( const=f ) and whose function consists in 
deflecting the particle from the state of imponderability. By transforming the equation of motion (4), in 
which the substitution FfF +→  is fulfilled, to the reference frame K~ ′ , we obtain the following 
equation of motion (cf. (7) and (8)): 
 Ffr ~+=′!!m . (12) 
In the region of space-time (we shall call it region P ), in which the following condition is fulfilled  
 fF <<~ , (13) 

force F~  in expression (12) can be neglected as compared with the force f  and as a result we come to 
the equation fr =′!!m , according to which the acceleration of particle in the K~ ′ -frame is conditioned 
only by the action of external force f , as it should be for a true inertial reference frame. Consequently, 
in describing the motion of particle in the region P  the reference frame K~ ′  can be considered as 
inertial one. Apparently, the region P  lies in a vicinity of the point, at which   
 0~ =F , (14) 
and the accuracy, with which the frame K~ ′  is inertial, is determined by the accuracy, with which 
inequality (13) is fulfilled. 
 Thus, in describing the motion in the noninertial reference frame, in which the imponderability 
state of particle is achieved, i.e. equality (14) holds, there exists such a space-time region in which this 
reference frame differs very little from the inertial one. For this reason it is natural to call such a 
reference frame the quasiinertial one. Obviously, there is infinitely many quasiinertial reference frames 
physically equivalent to each other. In particular, the quasiinertial reference frames moving uniformly 
and rectilinearly relative to each other are physically equivalent, if only the motion of particle is 
considered in the space-time regions, in which the force F~  can be neglected as compared with the 
external force f . On the other hand, if we want to take into consideration corrections to the solution of 
equation (12) conditioned by the force F~ , then the quasiinertial reference frames mentioned above can 
be found to be physically nonequivalent to each other. This is due to the fact that because of the 
vectors 0r  and 0r!  entering into equation (12) there can appear in space the preferential regions and 
directions. 
 The results presented above can easily be generalized to the relativistic case. We proceed from 
the equation of motion 

 Fp =
dt
d , (15) 

where 
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ru != , )t(rr = , 0m  is the rest mass of particle. With the aid of equality  

 uF=2mc
dt
d , (16) 

which follows from (15), relativistic equation of motion can be recast in the quasiclassical form [4] 
convenient for further analysis: 
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As is clarified in [4], in order to describe the motion of particle within the framework of 
relativistic mechanics we have a right to use both inertial and noninertial reference frames. At 
transition from an inertial reference frame to the noninertial one the space-time geometry is not 
changed and remains pseudoeuclidean. Passing on to the noninertial reference frame K~ ′ , we shall take 
advantage of equalities (5) and (6) and introduce notation: 
 )t(00 ru,ru,ru !!! =′=′= . 
Further we substitute the first of equalities (6) in (17) and, assuming the conditions 
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to be fulfilled, expand the right-hand side of equation (17) in a series in powers of r′  and u′ . 
Retaining in the expansion only terms of the first order, we arrive at the following equation of motion 
for particle in the K~ ′ -frame: 
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Here expansion (9) and notation 
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equation 

 0
0 Fp =

dt
d . (20) 

Since in this case the right-hand side of equation (19) vanishes at 00, =′=′ ur , the particle, which is 
at rest at the origin of the reference frame K~ ′ , turns out to be free. At 00, ≠′≠′ ur  a force arises 
acting on particle. Thus, the state of particle with 00, =′=′ ur  turns out to be the imponderability 
state.  
 In the inertial reference frame K , described by Galilean coordinates z,y,x,t , the square of 
space-time interval is of the form 222222 dzdydxdtcds −−−= . From here it follows that coordinate 
t  has the meaning of physical time, and the rest of coordinates determine space intervals along 
corresponding axes. At the same time, in the reference frame K~ ′  coordinate t  represents a coordinate 
time and has no physical meaning. To obtain physical time τd  and physical length dl  in the K~ ′ -
frame, let us transform the square of space-time interval 2222 rddtcds −=  to the   frame K~ ′ , using the 
first of the equalities (6), and then separate out in the expression obtained the full square containing 
time coordinate. We have successively: 
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Putting 
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 ( ) ( )2222 dldcds −= τ  
and comparing the right-hand sides of two last relationships with each other, one can derive: 
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 If the particle, being at rest at the origin of the frame of reference, is in the imponderability 
state, it is reasonable to consider its proper time to flow uniformly, i.e. the course of time of the 
particle at different instants of proper time to be identical. Really, as it was noted in the previous 
section, in the imponderability state there is no force action on the particle and, thus, there is no reason 
for changing the course of time at the point where the particle is located. Denote by A and B  any two 
points lying on the particle’s trajectory in the inertial reference frame K , which the particle passes at 
the instances of time At  and Bt . Let Adτ  and Bdτ  be the intervals of proper time of the particle, being 
at rest at the origin of the K~ ′ -frame, corresponding to the intervals Adt  and Bdt , during which the 
particle moves in a path in the reference frame K  in a vicinity of points A and B  (it is assumed the 
instants of time At  and Bt  to lie on intervals Adt  and Bdt , and the instants of proper time Aτ  and Bτ  to 
correspond to these instants). Using the first of the relationships (21) and taking into account that for 
the particle at rest 0=′rd , the equality of the intervals of proper time BA dd ττ =  can be rewritten as 

 B
B

A
A dt

c
)t(dt

c
)t(

2

2
0

2

2
0 11 uu −=− . 

From the equality above the relative course of time can be found between points A and B on the 
particle’s trajectory in the inertial reference frame K : 

 
)t(c
)t(c

dt
dt

A

B

B

A
2
0

2

2
0

2

u
u

−
−

= . (22) 

Note that since we consider here the state of particle with 00, =′=′ ur , in virtue of (6) uu =(t)0 , 
i.e. (t)0u  in (22) is the velocity of particle at the instant of time t  relative to the inertial reference 
frame K .  

It should be emphasized that quantities Adt  and Bdt  in (22) have no sense of time intervals 
during which the particle passes identical distances in the vicinity of points A and B . The quantities 
above have the following meaning: they are those time intervals, which correspond to the identical 
intervals of proper time of the particle being in the imponderability state.  

The relative course of time between the points above in an inertial reference frame K ′  can be 
written in the form similar to (22): 

 
)t(c
)t(c

td
td

A

B

B

A

′′−
′′−

=
′
′

2
0

2

2
0

2

u
u , (23) 

)t( ′′0u being the velocity of particle at instant t ′  in the reference frame K ′ . Substituting (22) and (23) 
in (2) and taking into account that )t(u)t(u xx 0= , we obtain relationship 
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tuV

c
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 −






 −

=
−
−

u
u

u
u , (24) 

which represents a consistency condition for the theory developed here. Condition (24) can be verified 
as being an identity whose validity follows from the known equality (see [4], p.61) 
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with 0u  and 0u ′  being the velocities of particle in the reference frames K  и K ′ , respectively. The 
fulfillment of consistency condition (24) is an important argument in favour of the theory developed   
which establishes a link between the force effect on particle and the course of time along its trajectory. 
 Expression (22) can be represented in the following equivalent forms: 

 

2
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0

2
0

0

2
0

2
0

)()(
1
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1

)(
1

)(
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cm
tUtU
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tUtU
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dt
dt

B

A

Bkin

Akin

B

A

−
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−
+

=
+

+
= ε

ε

, (25) 

where )(tkinε  and )(tU  are the kinetic and potential energies of particle at the instant of time t , 
provided that equality 0)( 0 =tkinε  is fulfilled. As is seen from (22), if the particle’s velocity is small 
as contrasted to the speed of light, the change of the course of time is a relativistically small quantity of 

the order of .
2

0 






c
u  Retaining in the expansion of the right hand side of (25) only the main in 

magnitude term, one can obtain the following nonrelativistic formula: 
 

 ( ) ( ))()(11)()(11 2
0

2
0

BABkinAkin
B

A tUtU
cm

tt
cmdt

dt
−−=−+= εε . (26) 

 
 

3. Uniform electric (gravitation) field 
 

As an application of the results received, we first consider the motion of a particle in an 
external uniform field const=F . In this case 010 == FFF ,  (see (9)) and therefore, according to 
(10) and (11), in the reference frame K  the particle moves with constant acceleration 

 
m
Fa =0 , (27) 

while in the reference frame K~ ′  it is free, because in the last frame of reference the inertial force is 
completely compensated for by the external force F . From the solution of equation (11) at 01 =F , 
which is of the form tbar +=′ , with a  and b  being arbitrary constant vectors, it follows that the 
particle moving uniformly and rectilinearly in the reference frame K~ ′  is in the imponderability state. 
Thus, the motion of the particle of mass m  relative to an inertial reference frame under the action of a 
uniform field F  is equivalent to the motion of a free particle relative to the noninertial reference 
frame K~ ′ , which moves relative to the inertial frame with acceleration (27). Transition to the 
noninertial frame of reference allows one to completely exclude from consideration the uniform force 
field at once in the whole space. It should be remarked that uniform field has no physical sense, since 
such a field does not exist in nature. The real physical fields describing interaction between particles 
are essentially nonuniform. 
 Passing on to the relativistic case, we shall consider the solution of equation (20) obeying the 
initial condition 00 =p  at 0=t : tFp =0 . The sought-for solution is given by 
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The integration of last equation yields: 
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Taking into account equation (20) and equality 01 =F , the equation of motion (19) can be 
represented in the form: 
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 (30) 

Comparing equation (30) with the corresponding nonrelativistic equation (11), one can see that in the 
relativistic case the transition to the noninertial reference frame does not remove completely uniform 
force field in the whole space. The force field enters into the right-hand side of equation (30) both in 
the explicit form and implicitly, through the vector 0u  (see (28)). According to (30), the uniform 
external field cannot be compensated for completely by inertial forces because of relativistic 
corrections to the equation of motion. Note that for uniform field the force acting on particle in the 
reference frame K~ ′  does not depend on the radius-vector of particle r′ , but depends on its velocity u′ . 
This means that the particle, being at rest in the reference frame K~ ′  at arbitrary point of space, is in the 
imponderability state. The force effect on the particle arises, however, if we impart an initial velocity 

0≠′u  to it, thereby deflecting the particle from the imponderability state.   
 To establish the character of motion of the particle deflected from the imponderability state, let 
us consider the following initial state: 
 0000 00 ≠′=′≠′=′ uurr )(,)( . (31) 
Using expressions (28) and (29), we can derive from (5) and (6) the following initial conditions: 
 000 00 uurrr ′=+′= )(,)( . (32) 
The solution to equation of motion (15) subject to initial conditions (32) can be written in the form: 
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Taking into account (5), (6), (28) and (33), we can find: 
 ∞→→−=′ tttt at0)()()( 0uuu . (34) 
Next, we use the energy conservation law resulting from equation (15) (see (16)): 
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0 Fru . (35) 

Here the constant will be determined from the initial conditions (32): 
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0 1 rrFu . (36) 

On the other hand, using (34), from (35) and (36) we can derive: 
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Forasmuch as )t(0r  obeys the equation (20), the following conservation law holds true (cf. (35)) 
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It is seen from two last equations that 
 ∞→≠−=′ tCCt at0)( 12rF . (38) 
Combining (37) at 0=t  and (36), we can obtain: 

 0

2
1

2

2
02

012 11 rFu ′+


















 ′
−−=−

−

c
cmCC . 

From here and from (38) it follows that 
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Consequently, ∞→′≠′=′ ttt at)(,const)( 0rrr . Thus, in homogeneous force field the state of 
particle 0000 ≠′≠′ )(,)( ur  evolves into an imponderability state: 
 ∞→=′=′ ttt at0)(,const)( ur . 
In other words, the imponderability state is characterized by stability: if we deflect a particle from an 
imponderability state with the help of some external force and then leave it on its own, the particle 
returns to a free state (though, generally speaking, )()( 0rr ′≠∞′ ). Note that the conclusion made 
above concerning the stability of imponderability state of particle in homogeneous field is precise: in 
obtaining it no approximations based on the expansion of the right-hand side of equation (17) in 
powers of r′  and u′  were used. 
 The relative course of time between points A and B , lying on the trajectory of motion of 
particle in homogeneous field in an inertial reference frame, is calculated from formulas (22) and  (28) 
to yield: 

 2
0

2
0

1

1






+
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=

c
ta
c
ta

dt
dt

B

A

B

A .            (39) 

In the nonrelativistic approximation we obtain:  

 )(
2

1 22
2

2
0

BA
B

A tt
c

a
dt
dt

−+= . (40) 

According to (39), if ,tt AB >  then ,dtdt AB >  i.e. when a particle moves in homogeneous field, the 
relative course of time along the particle’s trajectory is increased: with increasing time coordinate in 
inertial reference frame time flows faster and faster at the point where the particle is situated. 
 As a homogeneous field, let us consider the field of gravity force gF 0m= , where const=g  is 
the free fall acceleration of particle. By putting z-geg = , where ze is the unit vector directed along the 
z -axis of the inertial reference frame K , we can express the force F  through potential ϕ : 
 const0 +=∇−= gz,m ϕϕ

"
F . (41) 
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Formulas (28) and (29) with ga =0  describe the free fall of particle with vanishing initial velocity. In 

virtue of (29), at 1<<
c
gt  the coordinate of a freely falling particle in the K -frame can be written in the 

form: 

 const
2
1

0
2

0 =−= z,gtzz . (42) 

As is seen from (39)-(42), at the free fall of particle relative to inertial reference frame, the field 
potential decreases and time flows faster and faster at the point of particle’s localization. Calculate the 

proper time interval with the aid of formula (21) (at 0=′rd ) by assuming the condition 1<<
c
gt  to be 

fulfilled. Taking into account (28), (41) и (42), we obtain: 

 dt
c

dt
c
gtdt

c
)t(d 2 
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−=−= 2

22
1

2
111 ϕτ u . (43) 

In deriving the last formula the constant in (41) was defined from the condition for the vanishing of 
potential ϕ  at 0=t . The relative course of time in inertial reference frame between points A and B , 
which can be determined by equality BA dd ττ = , is expressed by (40) with ga =0 .  
 

4. Homogeneous magnetic and electric fields 
 

At first we dwell upon a homogeneous magnetic field const=B . When a particle with charge 
e  moves in this field, the components of force 0F  and 1F  (see (9)) are given by: 

 ][],[ 100 BuFBuF ′==
c
e

c
e . 

Equations (10) and (11) can be written in the form 
 ][ 00 uωr =!! , (44) 
 ][ uωr ′=′!! , (45) 

where 
mc
eBω −= . According to (44) and (45), in the nonrelativistic case the transition to the noninertial 

reference frame K~ ′ , whose origin rotates at angular velocity ω  about on axis passing through the 
origin of the K -frame, does not exclude the homogeneous magnetic field from equation of motion. 
Furthermore, the equation of motion of particle in the reference frame K~ ′  (45) does not differ in form 
from equation (44). As is seen from (45), the state of particle with  
 tII0 urr ′+′=′   at   const,const, II0 =′=′ ur ωuII′  (46) 

is an imponderability state. For the conservation law const=′ 2u  is fulfilled, if we deflect the particle 
from the imponderability state, having imparted an initial velocity )( ωuu ⊥′≠′ ⊥⊥ 00 0  to it, and 
leave to its own devices, the particle will not return to the imponderability state.   

The equation of motion of particle in the reference frame K~ ′  (19) differs from equation (45) by 
relativistic corrections. Otherwise the characteristics of motion in the reference frame K~ ′  in relativistic 
and nonrelativistic cases do not differ from each other. 
 For homogeneous magnetic field the conservation law const2

0 =u  follows from equation (20). 
Therefore in virtue of (22) BA dtdt = , i.e. the course of time along the particle’s trajectory in 
homogeneous magnetic field in inertial reference frame is uniform. 
  We now turn to the discussion of homogeneous electric E  and magnetic B  fields, supposing 
for definiteness the field B  to be directed along the z -axis. For a charged particle with charge e  the 
components of force 0F  and 1F  (see (9)) are given by  
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 ][],[ 100 BuFBuEF ′=+=
c
e

c
ee  (47) 

and therefore the equation of motion of particle in the reference frame K~ ′  can be written in the form 
(45). From here it follows that, as with homogeneous magnetic field, the state (46) is an 
imponderability state. The solution to equation (10), in which 0F  is given by the first of the formulas 
(47), can be written as: 

 [ ] [ ]⊥⊥ +++= EωuErωu 2II0
II

00 )()(
ωm
et

m
ett  , (48) 

where 
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0, ϕa  and zu 0  are arbitrary constants. From here we obtain the following formula for the kinetic 
energy of particle: 
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Formula (26), in which )(tkinε  is given by expression (49), determines the relative course of time in an 
arbitrary constant in time homogeneous external field. In particular, in the case of crossed field 
( 0=zE ) the following expression is obtained ( mm =0 ): 

 ( ))()(1 002 BA
B

A tt
mc

e
dt
dt

⊥⊥⊥ −+= rrE  . 

 For relativistic particle we restrict our consideration to the case of the fields E  and B  parallel 
to the z -axis. The solution of equation (20), in which function 0F  is determined by the first of the 
formulas (47), can be written in the form [17]: 
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where ,constp~,constp oz ==⊥0  the function )t(ϕϕ =  obeys the equation 
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The relative course of time can be calculated by formula (22), taking into account equalities (50) and 
(51) and relationship 
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The final result is: 
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It is seen from (52) that in the absence of electric field ( 0=E ) BA dtdt = , and at 000 ==⊥ zp~p  the 

formula (39) is obtained, in which 
0

0 m
eEa = . 

 
5. Gravitational field of a point particle 

 
Let's consider the motion of a point particle of mass m  in gravitational field created by a point 

particle of mass M , being located at the origin of the reference frame K . The motion of particle is 
described by the equation (4), in which  

 3r
rF α−= , (53) 

where GmM=α , G  is the gravitational constant. 
 By using the relation (5) connecting coordinates of particle in the reference frames K  and K~ ′  
with each other, transform the equation of motion (4) to the following equation describing the motion 
of particle in the K~ ′ -frame: 

 
( )

)t,(~)t(m
)t(

)t(m rFr
rr

rrr ′≡−
+′

+′
−=′ 03

0

0 !!!!
α

. (54) 

The requirement that the particle, being at rest at the origin of the reference frame K~ ′ , be free is 
expressed by equality 
 00 =)t,(~F , (55) 
which results in the equation defining the function )t(0r : 

 
)t(r
)t()t(m 3

0

0
0

rr
α

−=!! . (56) 

 Next, we expand the expression for the force )t,(~ rF ′  in a power series in r′  and in this 
expansion retain, under the assumption that )(0 tr<<′r , only linear terms. As a result we obtain the 
following equation of motion: 

 
( )

)t,(
)t(r

)t()t(
)t(r

m rFrrrrr ′≡




 ′
−′−=′ 12

0

00
3

0

3α
!! . (57) 

As is seen from (57), the state of the particle, being at the origin of the reference frame K~ ′ , is an 
imponderability state. At 0≠′r  on the particle acts the force )t,( rF ′1  resulting from the 
inhomogeneity of gravitational field. 
 Suppose that 
 nr )t(r)t( 00 = , (58) 
where 10 0 ==∞<< nn ,const,)t(r . Vector n  characterizes the radial direction in which there 

takes place a free fall of the reference frame K~ ′  on the force center, whose role is played by point 
particle of mass M . In this case equation (56) can be written in the form: 

 
)t(r

)t(rm 2
0

0
α−=!! . (59) 

 Consider the peculiarities of the motion of particle in a vicinity of the origin of the reference 
frame K~ ′ . For simplicity, we neglect in equation (57) the dependence of quantity )t(r0  upon t  
considering this dependence to be weak enough ( 00 r)t(r = ). Introduce the set of mutually orthogonal 

unit vectors of the reference frame K~ ′ , 321 eee ,, , such that  [ ] [ ] 3212133 ,, eeeeeene === . The 
solution of equation (57) is looked for in the form 
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 332211 AAA eeer ++=′ , (60) 
where ),,n()t(AA nn 321==  are the required functions satisfying the set of equations 
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The general solution of equations (61) is of the form: 
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with 330 and),2,1(, AAnA nn ′′′=ϕ  being arbitrary constants. According to (62), if we exclude 
from consideration the solution corresponding to unstable motion, i.e. if we choose the initial 
conditions so that 03 =′′A , the picture of motion of the particle in the K~ ′ -frame in a vicinity of point 

0=′r  at 0≥t  can be described as follows: along the 3e -axis the particle asymptotically approaches 
point 0=′r , and along the 1e  and 2e -axes it oscillates about this point with frequency 1ω . 
 Note that the expression for the force )t,( rF ′1 , acting on particle in the reference frame K~ ′  
(see (57) and (58)), depends on the choice of radial direction described by unit vector n , along which 
the free fall of the reference frame K~ ′  on the force center takes place. The existence of this 
dependence results in that the reference frames K~ ′ , differing from each other only by the direction of 
translational motion relative to the reference system K  (i.e. by the free fall direction on force center), 
are physically nonequivalent to each other. There are, thus, infinitely large number of quasiinertial 
reference frames physically nonequivalent to each other, in each of which the imponderability state of 
particle is possible. 
 The motion of a particle, freely falling on force center along the direction n  in the reference 
frame K~ ′ , is described by equation (54), where function )t(r0  obeys equation (59). Let's proceed to a 

reference frame K
~~ ′ , which is obtained from the reference frame K~ ′  by way of its translation along the 

vector n  and which moves along this vector uniformly and rectilinearly relative to the reference frame 
K~ ′ . The coordinates ( ) r ′′≡′′′′′′ z,y,x  and ( ) r′≡′′′ z,y,x  of particle in the above reference frames are 
connected with each other by equality tbarr ++′′=′ , where constb,a,b,a === nbna . Going 
from variables r′  to variables r ′′  in equation (54) and using notation 

)t(r)t(rbta 00 ′=++ , 
we obtain the following equation of motion: 

 
( )

n
nr

nrr )t(rm
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α
. (63) 

If the function )t(r0′  obeys equation 

 
)t(r

)t(rm 2
0

0 ′
−=′ α

!! , (64) 

then equations (63) and (64) will coincide in form with equations (54) and (59), respectively. This 
means that the reference frames freely falling towards a force center in some radial direction are 
physically equivalent to each other if only they can be made coincident with each other by way of their 
translation in this direction and if, besides, they move uniformly and rectilinearly relative to each 
other. 
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 Passing on to the solution of equation (59), we shall write first of all the energy conservation 
law resulting from it ( )(tU  is potential energy): 
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Eliminating )t(r0  from equalities (59) and (65), we come to the following equation of motion: 
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If the initial condition  
 constu)t(u == 00    at   0=t  (67) 
is imposed on the solution of equation (66), the latter proves to be equivalent to the following integral 
equation: 
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  Consider the case, when the particle’s falling on force center begins at the instant of time 0=t  
with vanishing initial velocity: 00 =u . In virtue of (65) 
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In the region E)t(mu
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0   we expand the integrand in (68) in a series in powers of 2
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restrict ourselves to several terms of expansion. As a result we obtain the expression: 
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From here we have: 
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 The proper time τd  of the particle, being at rest at the origin of the reference frame K~ ′ , can be 
calculated by formula (21) (at 0=′rd ). Using the initial conditions mentioned above and taking into 
account the energy conservation law )0()()( UtUtkin =+ε , we get: 
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By introducing the potential of gravitational field 
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we arrive at the formula coincident in form with (43): 
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From (72) the following expression is obtained for the relative course of time between points A and 
B  in an inertial reference frame: 
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Since the quantity )t(r0  decreases as the particle approaches the force center (in this case according to 
(70) the magnitude of velocity )(0 tu  increases), by virtue of (72) and (73) the proper time of particle 
decreases, but the relative course of time in the inertial reference frame K  increases. Thus, in inertial 
reference frame, as the particle approaches the force center, time flows faster at the point where the 
particle is located. Note that in view of (70) potential )(tϕ  can be written at )(r)(r)t(r 00 000 <<−  

in the form 2)( 22
0 tgt −=ϕ , and therefore formula (73) for the relative course of time can be recast to 

the expression (40), in which one should make the substitution 00 ga → . 
 

6. Conclusion 
 
The elucidation of the physical nature of time is one of the most important problems of 

theoretical physics. The purpose of research on the problem of time is to study the physical properties 
of time, i.e. to ascertain the possible interrelation between time and material processes. In particular, it 
is of interest to find out 

• whether the flow of time depends upon physical processes and whether the back 
influence exists of the change of the course of time on physical processes, 

• what mechanisms of the change of the course of time are available, 
• what factors are capable to speed up or to slow down the flow of time. 

In papers [5-8] on the basis of Lorentz transformations relating to coordinates of points, lying 
on the trajectory of motion of particle in a force field, the phenomenon of local dynamical 
inhomogeneity of time is predicted. The main result consists in the proof that material processes 
occurring in a physical system under the action of a force field necessarily influence the course of time 
along the trajectory of motion of particle. The case in point is the change of the course of time along 
particle’s trajectory in one inertial reference frame as compared with that in the other. 

In this paper the next step is made: the relationship is obtained which relates the course of time 
on one path section of a particle when moving in a force field to that on the other path section in the 
same inertial reference frame. The main idea underlying the approach developed results from the 
analysis of Lorentz transformations and consists in that the course of time of a particle moving by 
inertia, i.e. not subject to the influence of a force, should be uniform. 

As is known [17,18], the existence of dependence of the course of time upon the gravitational 
field potential is predicted with the general theory of relativity (GTR). According to GTR ([17], 
p.303), time flows differently at the different points of space in one and the same reference frame. 
Since “gravitational field is nothing more nor less than a change of the space-time metric” ([17], 
p.313), one can assert, apparently, that the change in the course of time is due, in the view of GTR, to 
the change of the 4-space metric. It should be emphasized that in the present paper gravitational field is 
considered as an ordinary force field, and the particle motion is supposed to occur in pseudoeuclidian 
space-time. The main formulas of the article, (22) and (25), describe the change in the course of time 
in an arbitrary force field at different spatial points in one and the same inertial reference frame. As is 
seen from the results received, the change in the course of time in a force field is in no way connected 
with the change of space-time metric. It is conditioned by the force field action on particle in inertial 
reference frame and is a direct consequence of the dynamical principle underlying relativistic 
mechanics. 

It should be emphasized that the existence of dependence of the course of time on the state of 
motion of particle in a force field points to the feasibility of controlling the course of time using force 
fields. 

Note an important peculiarity of the noninertial reference frame in which the imponderability 
state of a particle is attained: there is such a space-time region in which the reference frame at hand 
can be approximately considered as inertial. In connection with the fact that such reference frames (it 
is natural to call them quasiinertial in contradistinction to the true inertial reference frames) are, 
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generally speaking, not equivalent to each other (see previous section), the derivation of a rigorous 
criterion for inertial reference frame acquires especial significance. The dynamical criteria for defining 
the inertial and noninertial states are considered in the papers by B.I.Peschevitsky [19]. The 
heliocentric reference frame seems to be among the quasiinertial reference frames, being inertial with 
adequate accuracy only in a restricted region of space (for example, within the limits of our Galaxy) 
[16]. 

The author is grateful to Yu.D. Arepjev for his interest in the paper and stimulating discussions. 
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