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Abstract

From the action principle the quantum dynamical equation is obtained, both rela-
tivistically and gauge invariant, which is analogous to the Dirac equation and describes
the behaviour of the arbitrary number of self-acting charged particles. It is noted that
solutions to this equation are indicative of the soliton nature of the electron and allow
one to determine the internal energy, dimensions and geometric shape of the electron in
different quantum states. The theory proposed represents a synthesis of the standard
QED and the ideas of the theory of self-organization in physical systems.

1 Introduction

The development of an uncontradictory quantum model of the electron which would
take into account the Coulomb self-action of the particle remains one of the key
problems of present-day physics. Numerous attempts to work out such a model
have failed. In our opinion, the main reason consists in using the standard scheme
of quantum mechanics whose framework proved to be too narrow to describe the
electron’s self-action in a self-consistent way.
One of the most bold ideas concerning the physical nature of the electron belongs

to E. Schrödinger who believed that the dimensions of the electron are the same
as those of the atom [1]. According to Schrödinger’s interpretation of quantum
mechanics the quantity e|ψ|2 is the density of spatial distribution of the electron’s
charge (e and ψ are charge and wave function of the particle, respectively).
An important stride towards elucidating the true physical nature of the electron

was made by A. Barut and his collaborators [2-5]. They managed to formulate and
develop quantum electrodynamics (QED) based entirely on the self-energy picture
(the Self-Field QED) without treating the second quantization of electromagnetic
field. As is pointed out in [3], the correct equation of motion for the radiating
electron is not the Dirac or Schrödinger equation for a bare electron, but an equation
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with an additional nonlinear self-energy term. This viewpoint is reciprocated by
many investigators, among which are W. Fushchych and his collaborators who have
been deeply involved in the search for the nonlinear equation for the electron [6,7].
In [8-12] new lines of approach to the problem are proposed which change QED

into a theory of self-organization of the electrically charged matter. Mechanism of
self-organization consists in the back action of the Coulomb field created by the
particle upon the same particle and is described by the model of an open system
with the wave functions belonging to the indefinite metric space.
Basic to the approach are the following physical ideas:

1. The electron is a quantum (an elementary excitation) of the charged matter field
localized in a bounded region of space and subject to the Coulomb self-action.
This means that the ability of the electron to produce the Coulomb forces
and Coulomb self-action are the physical properties intrinsically inherent in the
charged matter and should be included from the very beginning in the definition
of the particle. Mathematically, from this it follows that the behaviour of the
electron should be governed by the nonlinear dynamical equation. Physically,
the electron becomes a self-organizing system, whose geometric shape
and linear dimensions are determined in a self-consistent way from the solutions
of dynamical equation.

2. Since the electron is a clot of the charged matter producing the long-range
Coulomb forces in the surroundings, its environment becomes a medium which
can have a determining effect on the physical properties of the particle. Thus,
the electron turns to an open system inseparable from the surrounding
medium. In a sense the whole universe takes part in the formation of the
electron.

The aim of this article is to briefly outline the main results of the theory of self-
organizing electron which represents the synthesis of the standard QED and the
theory of self-organization in physical systems [13]. The foundation of the theory is
the relativistically invariant action which takes into account both the Coulomb self-
action and the interaction of charged particles with the transverse electromagnetic
waves and is based on the model of open system. The fundamental dynamical
equation derived from the action principle [8,11,12] is a generalization of the Dirac
equation to the case of the self-organizing electron. The solutions to this equation are
indicative of the soliton nature of the electron and allow one to determine the internal
energy, dimensions and geometric shape of the particle in different quantum states.
It should be emphasized that the theory proposed fits the fundamental principles of
symmetry, gives an insight into the problem of electron’s stability and doesn’t lead
to the divergence of self-energy. The calculations of the hydrogen atom’s dimensions,
Balmer’s spectrum and total angular momentum of the electron, which have been
made to date, are in agreement with experimental data.
Section 2 deals with the equation of motion for the self-acting electron in the

nonrelativistic approximation. Secondary quantized version of the theory is briefly
outlined. In Section 3 the relativistic generalization of the fundamental dynamical
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equation is obtained. The main results of the paper are summarized in Conclusion.

2 Nonrelativistic equation for the electron

In order to represent the Coulomb field produced by the electron as one of its physical
properties we need to derive the dynamical equation which allows for the Coulomb
self-action. One of the hints as to how to do this can be obtained from Maxwell’s
equations for the electric and magnetic fields. From them it follows that the total
energy W of the Coulomb field can be written by

W =
1

2

∫
d~r1

∫
d~r2 |~r1 − ~r2|−1ρ(~r1, t)ρ(~r2, t), (1)

ρ = ρ(~r, t) being the charge density of the particles. Quantity (1) is the potential
energy of the Coulomb interaction between the charges including the self-energy of
each particle. Obviously, when deriving the equation of motion for the self-acting
electron from the action principle, we have to include the additional term −W in
the Lagrangian L of the electron field, i.e.,

L = L0 −W (2)

where L0 is the Lagrangian for a free particle in the absence of the Coulomb field.
Making use of the nonrelativistic approximation,

L0 =
∫
d~r (
i

2
Ψ∗

↔
∂t Ψ− 1

2m
(~∇Ψ∗)(~∇Ψ)), (3)

and putting
ρ = eΨ∗Ψ, (4)

we arrive from the action principle at the following equation for the wave function
Ψ = Ψ(~r, t) of the nonrelativistic electron:

i
∂Ψ

∂t
= (− 1

2m
~∇2 + U)Ψ; (5)

U(~r, t) = e2
∫
d~r1 |~r − ~r1|−1|Ψ(~r1, t)|2 ≡ U (6)

An inspection shows, however, that equation (5) with the potential energy function
(6) has no solutions satisfying the reasonable physical requirements. From the phys-
ical point of view, this is due to the fact that the Coulomb forces of repulsion are
trying to tear the electron to pieces. Formally, the potential energy function U (6)
is a potential hump rather than the potential well and so equation (5) cannot have
solutions that would describe the stable states of the particle.
Thus, the negative result is obtained: we had a try, remaining within the frame-

work of the standard theoretical scheme, to take into account the self-action of the
electron and arrived at the equation that has no reasonable physical solutions at all.
This result seems to mean that it is impossible to construct, without resorting to
essentially new physical ideas, a consistent quantum model of the electron.

3



As was noted in Introduction, the self-acting electron differs essentially from
the bare electron in its physical properties. The main difference is that the real
electron, as distinct from the bare one, produces the long-range Coulomb field in
the surroundings and as a result cannot be treated as an isolated system.
To take into account that the real electron is inseparably linked with the sur-

rounding medium, we should first of all increase the number of dynamical variables
describing it. Here we adopt the simplest version of the theory in which the number
of variables is doubled as compared with the isolated system, namely, to each dy-
namical variable of the bare electron, Ψ, there correspond two dynamical variables
which are denoted by Ψ and Ψ̃. These quantities are considered as components of
the wave function describing the quantum state of particle. One of them, say, Ψ,
corresponds in a sense to the particle alone (to the bare electron) and the other, Ψ̃,
to the surrounding medium in which the particle moves.
The fundamental quadratic form defining the metric of the wave function space

is assumed to be given by
Ψ̃∗Ψ+Ψ∗Ψ̃ (7)

This quantity is used instead of the positively defined quadratic form Ψ∗Ψ underlying
the conventional formulation of quantum mechanics. As the electric charge density
we take the quantity

ρ(x) = e(Ψ̃∗(x)Ψ(x) + Ψ∗(x)Ψ̃(x)), x = (t, ~r) (8)

and as the Lagrangian of the free electron field we use the function (cf (3))

L0 =
∫
d~r
{
i

2
(Ψ̃∗

↔
∂t Ψ+Ψ

∗ ↔∂t Ψ̃)− 1

2m
[(~∇Ψ̃∗)(~∇Ψ) + (~∇Ψ∗)(~∇Ψ̃)]

}
(9)

The Lagrangian L of the nonrelativistic self-acting electron is given by (2) where
W and ρ are defined by (1) and (8), respectively. The action principle with the
Lagrangian L (2) gives rise to the following nonlinear equations of motioni ∂

∂t
+
~∇2
2m
− U(x)

( Ψ(x)
Ψ̃(x)

)
= 0; (10)

U(x) = e
∫
d~r1 |~r − ~r1|−1ρ(~r1, t), (11)

the quantity ρ(~r, t) being given by (8). Evidently, the potential function U (11)
depends quadratically on the particle”s wave function and so the set of equations
(10) has nonlinear terms of the kind g1g2g3 with the quantities gi (i = 1, 2, 3) being
proportional to one of the functions Ψ or Ψ̃ .
An analysis shows that equations (10) have the solutions describing the stationary

states of the electron at N = −1 where N is the normalization constant
N =

∫
d~r (Ψ̃∗Ψ+Ψ∗Ψ̃) (12)

As is seen from (7), the wave functions of the self-acting electron belong to indefinite
metric space. The presence of two components of the nonrelativistic electron wave
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function without regard for the spin variables, Ψ and Ψ̃, implies that the particle
has an additional degree of freedom. In the theory under consideration this degree
of freedom is characterized by the sign of the normalizing factor N (N = ±1)
which acts as a quantum number taking into account the Coulomb self-action of
the particle. It is of interest that the states of the free electron and of the atomic
one differ from one another by the sign of N : N = +1 for the atomic electron and
N = −1 for the free one [10,14].
In the formulation being considered the quantities Ψ and Ψ̃ are independent

components of the wave function. These quantities, generally speaking, are in no
way linked with each other. An analysis shows, however, that among the solutions
of the set of equations (10) there are such solutions for which the constraint Ψ̃ =
cΨ, c = const is fulfilled, constant c being defined by the normalization condition
N = ±1 with N given by (12).
In connection with the quadratic form (7) it should be stressed that there is

no way of describing the electron as an open system without using the indefinite
metric space. This point is worthy of special attention because the quadratic form
determines the properties of the wave function space and thus the physical behaviour
of the system. At first sight, the quadratic form corresponding to the functional
space of two variables, Ψ and Ψ̃, should be given by

Ψ∗Ψ+ Ψ̃∗Ψ̃ (13)

instead of (7). Accordingly, the Lagrangian L̃ = L̃(Ψ, Ψ̃) of the real electron should
be constructed in the standard manner:

L̃(Ψ, Ψ̃) = L1(Ψ) + L2(Ψ̃) + Lint(Ψ, Ψ̃) (14)

where L1(Ψ) is the Lagrangian of the bare electron ( that is, of the electron isolated
from the medium), L2(Ψ̃) is the Lagrangian of the medium created by the particle
and estranged from it, and Lint the Lagrangian describing the interaction of the bare
electron with the medium, with the equalities

Lint(0, Ψ̃) = Lint(Ψ, 0) = 0

being fulfilled. If we now neglect the dynamical variables of the medium, that is, if
we put Ψ̃ = 0, we shall come to the Lagrangian of the bare electron

L̃(Ψ, 0) = L1(Ψ) 6= 0 (15)

being considered as zeroth approximation for the real particle. The other limiting
case, Ψ = 0, leads to the Lagrangian of the medium alone

L̃(0, Ψ̃) = L2(Ψ̃) 6= 0 (16)

We should take into account, however, that the real electron is indissolubly related to
the surrounding medium. The two objects, the bare electron and the bare medium
created by it, taken separately don’t exist in nature. Therefore, the use of the
Lagrangian (14), subject to the conditions (15) and (16), as a basis of the theory
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is intolerable. At the same time, using the quadratic form (7) and accordingly the
Lagrangian L = L(Ψ, Ψ̃) (2), where L0, W and ρ are defined by (9), (1) and (8),
we allow for the inseparability of the particle from the medium. In particular, the
equalities

L(Ψ, 0) = L(0, Ψ̃) = 0

are fulfilled which mean that the bare electron approximation has no physical mean-
ing; in either case, with no electron or with no medium, we have no physical system.
In the secondary quantized version of the theory, the Ψ- and Ψ̃-components of the

wave function turn, as usual, to the Ψ- and Ψ̃-operators. We restrict our attention
to the simplest case of the one particle field [9]. Here, the following representation
is valid:

Ψ(x) = Aϕ(x) , Ψ̃ = Aϕ̃(x) ,

A being an operator, ϕ(x) and ϕ̃(x) the wave function components obeying the
equations analogous to (10). The total electric charge operator Q , Q =

∫
d−→r ρ(x) ,

may be written down as Q = A+AeN with N =
∫
d−→r (ϕ̃∗(x)ϕ(x) + c.c.) .

It is obvious that the operator A+A = n̂ plays the part of the particle num-
ber operator corresponding to the quantum state under study. Since electron is a
fermion, its eigen-values can be equal merely to 0 or 1 . It follows from this that
the operator n̂ should obey the condition (n̂)2 = n̂. Operator A can be constructed
in terms of the secondary quantized operators a, ã, a+, ã+ satisfying the following
anticommutation relations:

[a , ã+]+ = [ã , a
+]+ = 1 , [a , a

+]+ = [ã , ã
+]+ = 0 , a

2 = ã2 = 0

These operators act in an indefinite metric space with the vacuum ket- and bra-
vectors obeying the conditions:

a | 0 〉 = ã | 0 〉 = 0 , 〈 0 | = | 0 〉+, 〈 0 | 0 〉 = 1
One can easily derive the following representation:

A = ( 1− a ã ) ( c1a+ c∗2 ã+) + ( c2 ã+ c∗1 a+ ) ( 1− ã+a )
with the constants c1 and c2 connected by c1c

∗
2 + c.c. = 1 . These results may be

generalized to the N -particle system (see [9]). It is easy to make sure that the Pauli
exclusion principle holds true, as it should be, for each particle taken individually.

3 Relativistic generalization

Let’s introduce some designations which are necessary for deriving the relativistic
fundamental equation of motion. As is known, any vector field, say, ~E = ~E(~r), can

be split into potential ( ~E‖) and vortex ( ~E⊥) components, ~E = ~E‖ + ~E⊥, which are
defined by

~∇× ~E‖ = 0; ~∇ ~E‖ 6= 0, (or = 0)
~∇× ~E⊥ 6= 0; ~∇ ~E⊥ = 0

(17)
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Analogously, any 4-vector field Aµ = (A0, ~A) can be represented as a sum of potential
(Aµ‖) and vortex (A

µ
⊥) components, A

µ = Aµ‖ + A
µ
⊥, with

Aµ‖ = (A
0, ~A‖), A

µ
⊥ = (0, ~A⊥) (18)

Splitting the vector fields entering into Maxwell’s equations for the electric ( ~E) and

magnetic ( ~B) fields into the vortex and potential components, we arrive at the two
independent subsets of equations:

∂t ~B = −~∇× ~E⊥, ~∇ ~B = 0

∂t ~E⊥ = ~∇× ~B − 4π~j⊥, ~∇ ~E⊥ = 0 (19)

and
~∇ ~E‖ = 4πρ, ∂t ~E‖ = −4π~j‖, ~∇× ~E‖ = 0 (20)

Each subset is seen from (19) and (20) to involve merely either the vortex compo-
nents or the potential ones. These subsets can also be represented in the 4-vector
form:

∂νFµνA = −4πjµA; ∂αFµνA + ∂µFναA + ∂νFαµA = 0, (A = ‖,⊥) (21)

where ∂ν =
∂
∂xν
= (∂t, ~∇); xν = (t, ~r), (ν = 0, 1, 2, 3); Fµν⊥ and Fµν‖ are the vortex

and potential components of the field-strength tensor Fµν defined by

Fµν⊥ =


0 −E⊥x −E⊥y −E⊥z
E⊥x 0 −Bz By
E⊥y Bz 0 −Bx
E⊥z −By Bx 0

 ;Fµν‖ =

0 −E‖x −E‖y −E‖z
E‖x 0 0 0
E‖y 0 0 0
E‖z 0 0 0


(22)

jµ⊥(x) and j
µ
‖ (x) are the components of the 4-current density j

µ(x) = (ρ(x),~j(x)). It

should be pointed out that the vortex (Aµ⊥) and potential (A
µ
‖ ) components of the

4-vector Aµ each taken separately are not the 4-vectors. Analogously, the quanti-
ties Fµν⊥ and Fµν‖ do not behave like the 4-tensors. Nevertheless, one can easily be
convinced of form-invariance of Maxwell’s equations (21) under Lorentz transforma-
tions.
Since the potential component of the electric field, ~E‖, is not an independent

degree of freedom of the electromagnetic field, we include it in the definition of the
elecrically charged matter to obtain the self-acting field. The vortex electromagnetic
field will be treated on the same grounds as the charged matter field, using the
indefinite metric space. To each dynamical variable we shall put into correspondence
two variables; for one of them the old designation will be retained ( ~E⊥, ~B or Fµν⊥ ) and
the other will be labelled by the sign ”tilde” ( ~̃E⊥,

~̃
B or F̃µν⊥ ). Maxwell’s equations

for the additional variables are supposed to have the usual form analogous to (21).
The action of the whole system which consists of n electrically charged fields

described by Ψk and Ψ̃k (k = 1, 2, . . . , n) and of the vortex electromagnetic fields
represented by Fµν⊥ and F̃µν⊥ can be written as
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S = S‖ + S⊥ + Sint; (23)

S‖ =
n∑
k=1

∫
d4x (

−
Ψ̃k (

i

2

↔
∂̂ −mk)Ψk + Ψ̄k( i

2

↔
∂̂ −mk)Ψ̃k)−

1

2

∫
d4x1

∫
d4x2 δ((x1 − x2)2) j‖µ(x1) jµ‖ (x2);

S⊥ = − 1
16π

∫
d4x F̃µν⊥ (x)F⊥µν(x);

Sint = −
∫
d4x j⊥µ(x)A

µ
⊥(x),

where S‖ is the action of the self-acting charged fields, Ψk and Ψ̃k are the wave
function components for a particle of massmk and electric charge ek (k = 1, 2, . . . , n);
S⊥ is the action of the vortex electromagnetic fields; Sint describes interaction of
charged particles with the electromagnetic fields; jµ‖ and j

µ
⊥ are the potential and

vortex components of the 4-current density

jµ(x) =
n∑
k=1
ek(

−
Ψ̃k (x)γ

µΨk(x) + Ψ̄k(x)γ
µΨ̃k(x))

=
(
ρ(x),~j(x)

) (24)

F̃µν⊥ and Fµν⊥ are vortex components of the field-strength tensors F̃µν(x) and Fµν(x);

F̃µν(x) = ∂µÃν(x)− ∂νÃµ(x); Ã = Ã⊥ + Ã‖;
Fµν(x) = ∂µAν(x)− ∂νAµ(x); A = A⊥ +A‖;
Aµ‖(x) = Ãµ‖(x) =

∫
d4x1 δ((x− x1)2) jµ‖ (x1);

Aµ⊥(x) = − 1
4π

∫
d4x1 δ((x− x1)2) ∂1νFµν⊥ (x1); (25)

Ãµ⊥(x) = − 1
4π

∫
d4x1 δ((x− x1)2) ∂1νF̃µν⊥ (x1);

Aµ(x) =
1

2

(
Aµ(x) + Ãµ(x)

)
;

∂̂ = ∂αγ
α, γα are Dirac’s matrices.

The action principle δS = 0 gives rise to the fundamental dynamical equations
for the charged particles (k = 1, 2, . . . , n)

(
i∂̂ − ekÂ(x)−mk

)( Ψk(x)
Ψ̃k(x)

)
= 0 (26)

and to Maxwell’s equations

∂νF̃µν⊥ = ∂νFµν⊥ = −4πjµ⊥,
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(27)

∂αF̃µν⊥ + ∂µF̃να⊥ + ∂νF̃αµ⊥ = ∂αFµν⊥ + ∂µFνα⊥ + ∂νFαµ⊥ = 0
By their appearance the equations of motion (26) coincide with the Dirac equation

for the charged particle in an external field described by the 4-potential Aµ = Aµ‖ +
Aµ⊥. However, in distinction to Dirac’s equation, they are nonlinear and nonlocal,
with the nonlocality being of the space and time character. The quantities Aµ‖
and Aµ⊥ entering into (26) differ from each other by their physical nature: the first
describes the Coulomb field and is expressed in terms of the wave functions of the
particles, and the second describes the vortex electromagnetic fields and is uniquely

determined by the field variables ~E⊥,
~̃
E⊥, ~B,

~̃
B. These two considerably different

quantities are combined in our theory to form the single 4-vector.
Excluding the vortex components F̃µν⊥ and Fµν⊥ of the field-strength tensors from

the general expression (23) for the action with the help of Maxwell’s equations (27),
we arrive at

S̃ =
n∑
k=1

∫
d4x [

−
Ψ̃k (

i

2

↔
∂̂ −mk)Ψk + Ψ̄k( i

2

↔
∂̂ −mk)Ψ̃k]−

1

2

∫
d4x1

∫
d4x2 δ((x1 − x2)2) jα(x1)jα(x2) (28)

If we put Ψ̃k = Ψk in (24) and (28), we shall come to the Self-Field QED by A. Barut
[2-5].
The action principle δS̃ = 0 gives the following equations of motion:

(
i∂̂ − ekÂ(x)−mk

)( Ψk(x)
Ψ̃k(x)

)
= 0, (29)

Aµ(x) =
∫
d4x1δ((x− x1)2)jµ(x1)

It should be stressed that for the reasons given in Section 2, if we put Ψ̃k = Ψk ,
equations (29) have no physical solutions. Using expression (28) one can derive in
the usual manner the energy-momentum tensor T µν for the system of n self-acting
charged fields (gµν = 0 at µ 6= ν, g00 = −gii = 1, i = 1, 2, 3)

T µν = tµν + θµν +
1

2
gµνjαA

α − Aµjν (30)

where

tµν =
i

2

n∑
k=1

( ¯̃Ψk
↔
∂µ γνΨk + Ψ̄k

↔
∂µ γνΨ̃k)−

gµν{
n∑
k=1

[ ¯̃Ψk(
i

2

↔
∂̂ −mk)Ψk + Ψ̄k( i

2

↔
∂̂ −mk)Ψ̃k]− 1

2
jαA

α},

θµν = − 1
4π
(F µαF να − 1

4
gµνF αβFαβ). (31)
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The components of the 4-tensor F µν = ∂µAν − ∂νAµ satisfying the equality
∂νF

µν = −4πjµ (32)

can be represented in the form F µν = F µν‖ +F
µν
⊥ , with F

µν
‖ describing the Coulomb

field and F µν⊥ the vortex fields. It should be stressed that in the model under study
the field described by F µν is not a degree of freedom independent of the charged
particles. For this reason the equalities (32) are the identities, not the equations.
The 4-tensor θµν (31) is the energy-momentum tensor for the field produced by the
charged matter. It satisfies the equation

∂νθ
µν = −F µ,

with F µ = F µαjα being the force-density 4-vector which describes the back action
of the fields produced by the charged particles on the same particles.
From the differential conservation law ∂νT̃

µν = 0 results the integral law of
conservation ∫

d~r T µ0 = P µ = const (33)

where P µ is the energy-momentum 4-vector. It should be noted here that the
quantity ∫

d~r θµ0 ≡ τµ0

is not the 4-vector. This means that it is impossible in principle to define correctly
the notions of energy and momentum of both the particle free of its own Coulomb and
vortex fields and the fields being produced by the particle and separated from it. It is
only the particle being thought of as an elementary excitation of the charged matter
together with the fields included in its definition that is a well-defined physical
object.
Quantum theory of the self-acting electron given above differs qualitatevely from

the theory of electromagnetic mass of the electron (the Abraham-Lorentz model).
In the A.-L. model the stability of the electron is achieved by introducing the special
attractive forces being produced by a hypothetical matter field and compensating
for the Coulomb repulsive forces. In the present theory, contrastingly, there are
no additional forces and no material sources creating them. It is the electrically
charged matter that is the only source of both the Coulomb forces and the forces
compensating for them and holding the particle stable. The stability of the electron
is due to the Coulomb self-action and is achieved by the use of the functional space
with indefinite metric.
As can be seen from the model of the electron discussed above, the Coulomb field

plays a leading part in formation of the electron being considered as a clot of the
charged matter localized in some region of space. It is evident, besides, that the
Coulomb self-action described by the last term in the right-hand side of (28) cannot
be considered as a small perturbation. Indeed, the behaviour of the electron wave
function is considerably dependent on the self-action: when the self-action is absent
(i.e., at A = 0 in (29)), the electron wave function is a plane wave, whereas at A 6= 0
the wave function describes a soliton [10,13] - the state of particle localized in space.
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4 Conclusion

The solutions to the nonlinear equations (10) and (26) in the absence of vortex
electromagnetic field were obtained and investigated in detail in [8-11,13]. Relaying
on these solutions we can draw the following conclusions:

1. The self-acting electron is a soliton which can be in different quantum states
characterized by internal energy, dimensions and geometric shape.

2. The self-acting electron has a discrete internal energy spectrum, the size and
geometric shape of the particle depending upon the value of its internal energy.

3. The atom consists of one or several electronic solitons interacting with the
nuclear soliton.

4. Discreteness of the internal energy spectrum of the nuclear soliton is responsible
for the appearance of the band structure of energy spectrum for the hydrogen
atom, Balmer’s spectrum being one of the energy bands.

5. Discreteness of the internal energy spectrum of the electron and existence of
energy bands in the atom offer great possibilities of using the quantum transi-
tions between the internal energy levels of a particle, including the levels inside
bands, for controlling intra-electron processes and producing new materials,
electronic devices and technologies.

Note that the self-acting electron cannot decay into fragments under the influence
of a perturbation. The particle can merely go from one quantum state to the other,
with the result that its charge distribution in space may vary considerably in size
and shape. The immediate task of theoretical research is to obtain and investi-
gate the solutions of the fundamental equations corresponding to both stationary
and nonstationary states of the self-acting electron and to evaluate the intensity of
quantum transitions between the internal energy levels.
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