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Abstract—A possibility of using the delay of light signals passing close to the Sun for testing gravitational
theories is discussed. A metric rigidly binds the observables: if the time delay of the signal is known,
the angle of deviation of the observed beam, its impact parameter and perihelion in the distant observer’s
Galilean frame of reference should be well defined. This allows the Schwarzschild and Papapetrou metrics
to be tested if the delay measurement error is no larger than a few microseconds.
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1. Discovery of a binary star system comprising
a pulsar (with the mass of two solar masses) and a
white dwarf (with the mass of half the solar mass) and
measurement of the delay of the light pulses (Shapiro
effect) that passed comparatively close (240 000 km)
to the pulsar companion [1] open up a possibility of
testing the gravitational theory by also simultaneous
measuring the angle of the light beam deflection by
the companion. Approximate formulas for radiolo-
cation effects were obtained in [2]. For each beam a
metric rigidly binds the observables, so that if the time
delay of the signal is known, the angle of deviation
of the observed beam and its impact parameter are
well defined. This allows predictions of the theory
to be compared with the observations if the angle of
deviation or the impact parameter or the distance from
the center of gravitation at the periastron point from
the point of view of the distant observer is also known.

For a beam passing at the edge of the solar disc,
the latter distance is known: it is equal to the Sun
photosphere radius (696 000 km). Therefore, it is sim-
pler to find out which of the known metrics agrees
with the observations. For simplicity, we assume that
in the Earth’s orbit plane at a distance half as far from
the Sun as the Earth there is a moving source of pe-
riodic light pulses or radio-waves which travel at the
edge of the solar disc to the observer on Earth, who
measures the pulse delay time caused by a decrease
in the speed of light near the Sun.

2. Let us consider the simplest case of a spherically
symmetric gravitational field where the star rotation
effect is ignored. Then the metric in the plane running

*E-mail: urusovskii_ia@mail.ru

through the center of gravitation can be represented
as

ds2 = γ(r)

{
(c dt)2 −

[
c

c‖(r)
dr

]2
−

[
c

c⊥(r)
rdϕ

]2}
,

(1)

where r and ϕ are the polar coordinates in the
Galilean frame of reference, which can be regarded as
the distant observer’s frame of reference, t is the time
in this frame, c‖, c⊥, and c are the speeds of light in
the radial and perpendicular directions, and infinitely
far from the center of gravitation, respectively. Con-
sidering that ds = 0 for the photon, we obtain

c dt =

√[
c

c‖(r)
dr

]2
+

[
c

c⊥(r)
rdϕ

]2
. (2)

The Fermat principle requires the extremum of the
functional

I = c

σ2∫
σ1

√[
sin β

c⊥(r)

]2
+

[
cos β

c‖(r)

]2
dσ (3)

between the fixed points σ1 and σ2 of the photon
trajectory, where dσ is the element of the trajectory
arc, β is the angle between the radial direction and
the tangent to the trajectory, dσ = r dϕ/ sinβ. Ex-
pression (3) can be represented as

I =

ϕ2∫
ϕ1

F (r, r′) dϕ,
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where

F (r, r′) =

√[
cr

c⊥(r)

]2
+

[
cr′

c‖(r)

]2
, r′ =

dr

dϕ
, cot β =

r′

r
.

For the solution of the Euler equation

F (r, r′) − r′
∂

∂r′
F (r, r′) = const,

which provides the extremum of this functional [3], we obtain

F (r, r′)
[
c⊥(r)

cr

]2
= const =

[
c⊥(r)

c

]2 1
r

√[
c

c⊥(r)

]2
+

[
cr′

c‖(r)r

]2
=

c⊥(rp)
crp

=
1
D

. (4)

Here rp is the distance from the center of gravitation to the periastron point, and D is the impact parameter of
the light beam; all distances are referred to the distant observer’s frame of reference. From (4) there follows the
relation

dϕ

dr
=

c⊥(r)
rc‖(r)

{[
cr

c⊥(r)D

]2
− 1

}−1/2

=
c⊥(r)
rc‖(r)

{[
rc⊥(rp)
rpc⊥(r)

]2
− 1

}−1/2

. (5)

Substitution of (5) into (2) results in

c dt =
c

c‖(r)

{
1 −

[
rpc⊥(r)
rc⊥(rp)

]2}−1/2

dr. (6)

Integration of (5) and (6) between rp and r gives the deviation of the beam from the initial direction and the
signal delay

δϕ(rp, r) =

r∫
rp

⎡
⎣c⊥(y)

c‖(y)

{[
yc⊥(rp)
rpc⊥(y)

]2
− 1

}−1/2

−
[(

y

rp

)2

− 1

]−1/2
⎤
⎦1

y
dy,

(7)

δt(rp, r) =
1
c

r∫
rp

⎡
⎣ c

c‖(y)

{
1 −

[
rpc⊥(y)
yc⊥(rp)

]2}−1/2

−
[
1 −

(
rp

y

)2
]−1/2

⎤
⎦dy.

The time for which the signal travels between the trajectory points with the coordinates r and rp is

t(rp, r) =
1
c

√
r2 − r2

p + δt(rp, r).

3. For the Papapetrou metric [4] (it is to this metric that the six-dimensional treatment of gravitation [4]
leads under quite different assumptions) in the spherically symmetric case, we have γ(r) = exp(−rg/r) and
c‖(r)/c = c⊥(r)/c = γ(r). Here the distances rp and D are related by the formula D = rp exp(rg/rp), from which
it follows that

rp = D − rg

[
1 +

1
2

rg

D
+

2
3

(rg

D

)2
+ ...

]
. (8)

Here rg = 2GM/c2 is the gravitational radius of the Sun, G is the gravitation constant, and M is the mass of
the Sun. Expressions (7) take the form
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δϕ(rp, r) = δφP(rp, r) =

1∫
u

[{
exp

[
2
rg

rp
(z − 1)

]
− z2

}−1/2

− 1√
1 − z2

]
dz,

(9)

δt(rp, r) = δtP(rp, r) =
rp

c

1∫
u

{
exp

(
rg

rp
z

)[
1 − z2

1 − z2

{
exp

[
2
rg

rp
(1 − z)

]
− 1

}]−1/2

− 1

}
dz

z2
√

1 − z2
,

where u = rp/r. Expanding the integrands in a series in the parameter rg/rp and performing term-by-term
integration, we obtain

δϕP(rp, r) =
rg

rp

√
1 − u

1 + u
+

(
rg

rp

)2
{

π

2
− arcsinu +

1
2

(
1

1 + u
− 3

) √
1 − u

1 + u
+ ...

}
,

(10)

δtP(rp, r) =
rg

c

[
ln

(
1 +

√
1−u2

u

)
+

√
1 − u

1 + u

]
+

rg

c

rg

rp

[
π − 2 arcsinu +

1
2

(
1

1 + u
− 3

)√
1 − u

1 + u

]
+ ...

Papapetrou proceeds from the assumption that in the gravitational theory the simplest metric is described
by only one dimensionless gravitational potential and that the product of the coefficients of the time and space
parts of the metric is unity while isotropy of the speed of light is conserved. In the six-dimensional treatment
of gravitation [5] this metric is obtained by applying the Fermat principle to the trajectories of elementary
particles moving at the speed of light in the Compton neighborhood of the three-dimensional subspace of the
six-dimensional Euclidean space.

4. For the Schwarzschild metric in the standard coordinates we have [2, 6] γ(r) = 1−(rg/r), c‖(r)/c =

γ(r) c⊥(r)/c =
√

γ(r),

D = rp

(
1 − rg

rp

)−1/2

, rp = D − rg

2

[
1 +

3
4

rg

D
+

(rg

D

)2
+ ...

]
. (11)

Expressions (7) take the form

δϕ(rp, r) = δφst(rp, r) =

1∫
u

{[
1 − z2 − rg

rp
(1 − z3)

]−1/2

− 1√
1 − z2

}
dz

=
rg

rp

(
1 +

u

2

)√
1 − u

1 + u
+

1
8

(
rg

rp

)2
{

15
2

[π

2
− arcsinu

]
+

(
1

1 + u
− 5

)√
1 − u

1 + u
+

3u

2

√
1−u2 + ...

}
,

(12)

δt(rp, r) = δtst(rp, r) =
rp

c

1∫
u

{(
1 − rg

rp
z

)−1[
1 − 1 − (rg/rp)z

1 − (rg/rp)
z2

]−1/2

− 1√
1 − z2

}
1
z2

dz

=
rg

c

{
ln

1 +
√

1 − u2

u
+

1
2

√
1 − u

1 + u
+

rg

8rp

[(
1

1 + u
− 5

)√
1 − u

1 + u
+ 15

(π

2
− arcsinu

)]
+ ...

}
.

For the Schwarzschild metric in the isotropic coordinates we have [2, 6]

γ(r) =
[
4 − (rg/r)
4 + (rg/r)

]2
,

c‖(r)
c

=
c⊥(r)

c
=

(
1 − rg

4r

)(
1 +

rg

4r

)−3
,

(13)

D = rp

(
1 +

rg

4rp

)3(
1 − rg

4rp

)−1

, rp = D − rg

[
1 +

7
16

rg

D
+

9
16

(rg

D

)2
+ ...

]
,
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and expressions (7) take the form

δϕ(rp, r) = δϕiso(rp, r) =

1∫
u

[{[
4 + (rg/rp)z
4 + (rg/rp)

]6[ 4 − (rg/rp

4 − (rg/rp)z

]2
− z2

}−1/2

− 1√
1 − z2

]
dz

=
rg

rp

√
1 − u

1 + u
+

1
2

(
rg

rp

)2
{

3
16

[π

2
− arcsinu

]
+

(
1

1 + u
+

3
8

)√
1 − u

1 + u
+ ...

}
,

(14)

δt(rp, r) = δtiso(rp, r) =
rp

c

1∫
u

{
(1+rgz/4rp)3

1−rgz/4rp

[
1 −

(
1+rg/4rp

1+rgz/4rp

)6(1−rgz/4rp

1−rg/4rp

)2

z2

]−1/2

− 1√
1−z2

}
1
z2

dz

=
rg

c

[
ln

1 +
√

1 − u2

u
+

√
1 − u

1 + u
+

rg

2rp

{
31
16

[π

2
− arcsinu

]
−

(
9
4

+
u

1 + u

)√
1 − u

1 + u

}
+ ...

]
.

5. For the Papapetrou metrics the total beam de-
viation and the signal delay are

ΔϕP = δϕP(rp, rs) + δϕP(rp, ro),
(15)

ΔtP = δtP(rp, rs) + δtP(rp, ro),

where rs and ro are the distances from the center of
gravitation to the source point and the observation
point, respectively. For the other two metrics consid-
ered above the corresponding formulas are obtained
by replacing the subscript P in (15) with the sub-
scripts st or iso. The numerical values of the shifts
for the beam moving at the edge of the solar disc are

ΔϕP = 1.738′′,

Δϕst = 1.744′′,

Δϕiso = 1.738′′,

Δϕst − ΔϕP = 0.006′′,

Δϕiso − ΔϕP = 1.9′′×10−6,

ΔtP = 132.2 μs,
Δtst = 122.4 μs,
Δtiso = 132.2 μs,
ΔtP − Δtst = 9.8 μs,

ΔtP − Δtiso = 1.2×10−5μs.

It is seen that in the Schwarzschild metric in
the standard coordinates the signal delay under the
conditions in question is almost 10 μs smaller than in
the compared cases. With the measurement error no
larger than a few microseconds, it is possible to ob-
serve this difference in signal delay, which allows pref-
erence to be made in favor of either the Schwarzschild
metric in the standard coordinates or any of the other
two metrics.

However, for comparison of the metric gravita-
tional theories with the observations, the coordinates
in these theories should be expressed in terms of

measurable quantities. One of these quantities is
the metric coefficient γ(r) characterizing time di-
lation in the neighborhood of a massive body and
gravitational displacement of the source radiation fre-
quency. For the Papapetrou metric, rg/r =− ln γ(r)
and rg/rp =− ln γ(rp); for the Schwarzschild met-
ric in the standard coordinates, rg/r = 1−γ(r) and
rg/rp = 1−γ(rp); and for the Schwarzschild metric in
the isotropic coordinates,

rg

r
= 4

1 −
√

γ(r)
1 +

√
γ(r)

,

rg

rp
= 4

1 −
√

γ(rp)
1 +

√
γ(rp)

.

If the coefficients γ(rp) for all metrics under con-
sideration are set equal to this coefficient in the Papa-
petrou metric, Δtst will decrease only by 2.4×10−9 μs
and Δtiso by 3.3×10−6 μs. Variation in small values
rg/r at the source and reception points is all the more
negligible because variation in the radial coordinate
by a value on the order of rg changes rg/r only by a
value on the order of (rg/r)2.

For the local observer, the gravitational accelera-
tion has the form [5]

gloc(r) = c‖(r)
c

γ(r)
d
√

γ(r)
dr

.

In particular,

gloc(r) = c2 rg

2r2
exp

(
− rg

2r

)
for the Papapetrou metric,

gloc(r) = c2 rg

2r2

(
1 − rg

r

)−1/2

for the Schwarzschild metric in the standard coordi-
nates, and
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gloc(r) = c2 rg

2r

(
r − rg

4

)−1(
1 +

rg

4r

)−3

for the Schwarzschild metric in the isotropic coordi-
nates. Now, if gloc(r) for all metrics under consider-
ation is set equal to that in the Papapetrou metric,
Δtst will decrease only by 2.0×10−8 μs and Δtiso by
3.4×10−6 μs. It is evident that the effect produced on
the signal delay time by the dependence of the above
three observables on the choice of the metric can be
ignored in the experiment under consideration.
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