Классики |
|
|
Стивен Хокинг квантовые черные дыры квантовая космология физическая реальность |
Роджер Пенроуз квантовая теория квантовая космология физическая реальность |
Два
физика-релятивиста представляют свои точки зрения на Bселенную, ее эволюцию и роль квантовой теории | |
Публикация в Scientific American и, соответственно, данный перевод даны с сокращениями, отмеченными многоточиями | |
Введение В 1994 Стивен Хокинг и Роджер Пенроуз прочли цикл публичных лекций по общей теории относительности в Институте Математических Наук имени Исаака Ньютона при Кембриджском университете. Наш журнал представляет вам выдержки из этих лекций, выпущенных в этом году издательством Princeton University Press под названием "Природа пространства и времени", которые позволяют сравнить взгляды этих двух ученых. Хотя оба они и принадлежат к одной школе в физике (Пенроуз ассистировал докторскую диссертацию Хокинга в Кембридже), их взгляды на роль квантовой механики в эволюции вселенной сильно отличаются друг от друга. В частности Хокинг и Пенроуз имеют различные представления о том, что происходит с информацией, запасенной в черной дыре и почему начало вселенной отличается от ее конца. Одно из главных открытий Хокинга, сделанных им в 1973, было предсказание того, что вследствие квантовых эффектов черные дыры могут испускать частицы. В результате такого процесса черная дыра испаряется, и в конечном счете возможно что от ее первоначальной массы ничего не останется. Но в течение своего формирования черные дыры поглощают множество падающих на нее частиц имеющих различные типы, свойства и конфигурации. Хотя квантовая теория требует, чтобы подобная информация была сохранена, подробности того, что же происходит с ней дальше, остаются темой для бурных дебатов. Хокинг и Пенроуз, оба полагают что, во время излучения черная дыра теряет информацию, которую она содержала в себе. Но Хокинг упорно утверждает, что эта потеря невосполнима, тогда как Пенроуз доказывает, что она сбалансирована спонтанными измерениями квантовых состояний, которые вводят информацию обратно внутрь черной дыры. Оба ученых соглашаются с тем, что будущая теория квантовой гравитации необходима для описания природы. Но их взгляды отличаются на некоторые аспекты этой теории. Пенроуз считает, что даже если фундаментальные взаимодействия элементарных частиц симметричны по отношению к обращению времени, то квантовая гравитация должна нарушать такую симметрию. Временная асимметрия должна тогда объяснить, почему в начале вселенная была столь однородна (как показывает микроволновое фоновое излучение, рожденное большим взрывом), тогда как в конце вселенная должна быть неоднородна. Пенроуз пытается включить подобную асимметрию в свою гипотезу Вейлевской кривизны. Пространство-время, согласно Альберту Эйнштейну, искривлено присутствием материи. Но пространство-время может также иметь некоторую внутренне присущую ему деформацию, обозначаемую как Вейлевская кривизна. Гравитационные волны и черные дыры, например, позволяют пространству-времени искривляться даже в тех областях, которые являются пустыми. В ранней вселенной Вейлевская кривизна была вероятно равна нулю, но в угасающей вселенной, как доказывает Пенроуз, большое количество черных дыр приведет к росту Вейлевской кривизны. В этом и будет заключаться различие между началом и концом вселенной. Хокинг соглашается, что большой взрыв и заключительный коллапс ("Big crunch") будут различны, но он не рассматривает асимметрию времени в качестве закона природы. Основной же причиной для этого различия, как он думает, является тот путь, на который запрограммировано развитие вселенной. Он постулирует своего рода демократию, заявляя, что во вселенной не может быть выделенной пространственной точки; и поэтому, вселенная не может иметь границу. Именно это предложение об отсутствии границы, как утверждает Хокинг, объясняет однородность микроволнового фонового излучения. Взгляды обоих физиков на интерпретацию квантовой механики также в корне расходятся. Хокинг полагает, что единственное предназначение теории - давать предсказания, которые согласуются с опытными данными. Пенроуз же считает, что простое сравнение предсказаний с экспериментами не достаточно для объяснения действительности. Он указывает, что квантовая теория, требующая суперпозиции волновых функций, есть концепция, которая может приводить к нелепости. Эти ученые таким образом возводят на новый виток известную дискуссию Эйнштейна и Бора по поводу причудливых последствий квантовой теории. Стивен Хокинг о квантовых черных дырах: Квантовая теория черных дыр ..., кажется, приводит к новому уровню непредсказуемости в физике помимо обычной квантовомеханической неопределенности. Это происходит благодаря тому, что черные дыры, кажется, имеют внутреннюю энтропию и теряют информацию из нашей области вселенной. Я должен сказать, что эти требования весьма спорны: много ученых, работающих в области квантовой гравитации, включая почти всех тех, кто пришел в нее из физики элементарных частиц, инстинктивно отклоняют идею, что информация о состоянии квантовой системы может быть утеряна. Однако, такая точка зрения не привела к большому успеху в объяснении того, каким образом информация может покидать черную дыру. В конечном счете я полагаю, что они будут вынуждены принять мое предложение, что информация безвозвратно теряется, также, как они были вынуждены согласиться, что черные дыры излучают, что противоречит всем их предубеждениям ... Тот факт, что гравитация является притягивающей, означает, что во вселенной имеет место тенденция стягивания материи в одном месте, тенденция к формированию объектов подобных звездам и галактикам. Дальнейшее сжатие этих объектов может некоторое время сдерживаться тепловым давлением, в случае звезд, или вращением и внутренними движениями, в случае галактик. Однако, в конечном счете теплота или угловой импульс будут унесены прочь, и объект опять начнет сжиматься. Если масса меньше чем, приблизительно полторы массы Солнца, сжатие может быть остановлено давлением вырожденного газа электронов или нейтронов. Объект стабилизируется, чтобы стать белым карликом или нейтронной звездой, соответственно. Однако, если масса больше чем этот предел, то уже нет ничего, что могло бы остановить неуклонное сжатие. Как только сжатие объекта приблизится к некоторому критическому размеру, поле тяготения на его поверхности будет настолько сильно, что световые конусы будут наклонены внутрь .... Мы можем видеть, что даже уходящие во вне световые лучи изогнуты по направлению друг к другу, так что они сближаются, а не расходятся. Это означает, что имеется некоторая закрытая поверхность .... Таким образом должна существовать область пространства-времени, из которой невозможно вырваться на бесконечное расстояние. Эта область называется черной дырой. Ее граница называется горизонтом событий, она является поверхностью, сформированной световыми лучами, не способными вырваться к бесконечности .... Большое количество информации теряется, когда космическое тело коллапсирует, чтобы образовать черную дыру. Коллапсирующий объект описывается очень большим количеством параметров. Его состояние определятся видами вещества и мультипольными моментами распределения их масс. Несмотря на это формирующаяся черная дыра совершенно не зависит от вида вещества и быстро теряет все мультипольные моменты кроме первых двух: монопольного, который является массой, и дипольного, который является моментом импульса. Эта потеря информации действительно не имела значения в классической теории. Можно сказать, что вся информация относительно коллапсирующего объекта оказывается внутри черной дыры. Для наблюдателя, находящегося вне черной дыры, было бы очень трудно определить, на что похож коллапсирующий объект. Однако, в классической теории это было все еще возможно в принципе. Наблюдатель никогда фактически не терял бы из виду коллапсирующий объект. Вместо этого, ему казалось бы, что объект замедляется в своем сжатии и становится все более и более тусклым, по мере его приближения к горизонту событий. Этот наблюдатель все еще мог видеть из чего состоит коллапсирующий объект и как в нем распределена масса. Однако, с точки зрения квантовой теории все полностью меняется. В течение коллапса объект испустил бы только ограниченное число фотонов прежде, чем пересечь горизонт событий. Этих фотонов было бы соверщенно недостаточно, чтобы передать нам всю информацию относительно коллапсирующего объекта. Это означает, что в квантовой теории не существует никакого способа, которым внешний наблюдатель мог бы определить состояние такого объекта. Можно было бы подумать, что это не имеет слишком большого значения, потому что информация будет все еще внутри черной дыры, даже если ее невозможно измерить извне. Но это как раз тот случай, где проявляется второй эффект квантовой теории черных дыр.... Квантовая теория заставляет черные дыры излучать и терять массу. И по-видимому они в конечном счете исчезают полностью - вместе с информацией внутри них. Я хочу привести аргументы в пользу того, что эта информация действительно теряется и не возвращается в какой-либо форме. Как я покажу дальше, с этой потерей информации в физику входит неопределенность более высокого уровня чем обычная неопределенность, связанная с квантовой теорией. К сожалению, в отличие от соотношения неопределенности Гейзенберга, этот новый уровень неопределенности будет довольно трудно подтвердить экспериментально в случае черных дыр. Роджер Пенроуз о квантовой теории и пространстве-времени: Квантовая теория, специальная теория относительности, общая теория относительности и квантовая теория поля - величайшие физические теории 20-ого столетия. Эти теории не независимы от друг друга: общая теория относительности была построена на основе специальной теории относительности, а квантовая теория поля имеет специальную теорию относительности и квантовую теорию в качестве своего основания. Обычно говорилось, что квантовая теория поля - наиболее точная из всех когда-либо существовавших физических теорий, дающая точность до 11 знаков после запятой. Однако, я хотел бы указать, что общая теория относительности в настоящее время проверена с точностью до 14 знаков после запятой (и эта точность очевидно ограничена только точностью часов, идущих на Земле). Я имею в виду бинарный пульсар Hulse-Taylor PSR 1913+16, пара нейтронных звезд вращающихся друг относительно друга, одна из которых - пульсар. Общая теория относительности предсказывает, что подобная орбита медленно сжимается (а ее период уменьшается), потому что происходит потеря энергия вследствие излучения гравитационных волн. Этот процесс действительно был зафиксирован экспериментально, а полное описание его движения, наблюдаемого в течение 20 лет ... находится в согласии с общей теорией относительности (которая включает в себя Ньютоновскую теорию) с замечательной точностью, отмеченной выше. Исследователи этой звездной системы по праву получили Нобелевские премии за свою работу. Квантовые теоретики всегда утверждали, ссылаясь на точность их теории, что общая теория относительности должна брать с нее пример, но я думаю теперь, что пример должна брать квантовая теория поля. Хотя эти четыре теории достигли больших успехов, но и они не свободны от проблем .... Общая теория относительности предсказывает существование сингулярностей пространства-времени. В квантовой теории имеется "проблема измерения", я опишу ее позже. Может оказаться, что решение проблем этих теорий состоит в признании того факта, что они являются неполными теориями. Например, многие предвкушают, что квантовая теория поля могла бы каким-либо способом "размазать" сингулярности общей теории относительности.... А теперь я хотел бы сказать несколько слов относительно потери информации в черных дырах, которая, как я полагаю, имеет отношение к последнему утверждению. Я соглашаюсь почти со всем, что относительно этого сказал Стивен. Но в то время как Стивен расценивает потерю информации в черных дырах как новую неопределенность в физике, более высокого уровня, чем квантовомеханическая неопределенность, то я же рассматриваю ее как всего лишь "дополнительную" неопределенность .... Возможно, что небольшое количество информации теряется во время испарения черной дыры ... но этот эффект будет намного меньше, чем потеря информации во время коллапса (для описания которого я принимаю любую разумную картину заключительного исчезновения черной дыры). В качестве мысленного эксперимента рассмотрим замкнутую систему в большом ящике и рассмотрим движение материи внутри ящика в фазовом пространстве. В областях фазового пространства, соответствующих местоположениям черной дыры, траектории описывающие физическую эволюцию системы будут сходиться, и фазовые объемы, заполняемые этими траекториями, будут сокращаться. Это происходит в результате потери информации в сингулярности черной дыры. Данное сокращение находится в прямом противоречии с законом классической механики, известным как теорема Лиувилля, которая утверждает, что фазовые объемы, переносимые фазовыми траекториями остаются постоянными .... Таким образом пространство-время черной дыры нарушает сохранение таких объемов. Однако, в моей картине, эта потеря объема фазового пространства сбалансирована процессом спонтанных квантовых измерений, в результате которых происходит восстановление информации и увеличение объема в фазовом пространства. Как понимаю это я, так происходит потому, что неопределенность, связанная с потерей информации в черных дырах, является как бы "дополнительной" к квантовомеханической неопределенности: каждая из них - лишь одна сторона одной монеты.... А теперь давайте рассмотрим мысленный эксперимент с котом Шредингера. Он описывает незавидное положение кота в ящике, в котором испущенный фотон падает на полупрозрачное зеркало, а переданная часть его волновой функции регистрируется датчиком. Если датчик обнаруживает фотон, то срабатывает пистолет, убивающий кота. Если датчик не обнаруживает фотон, то кот остается жив и здоров. (Я знаю, что Стивен не одобряет дурное обращение с котами, даже в мысленных экспериментах!) Волновая функция такой системы является суперпозицией этих двух возможностей .... Но почему нашему восприятию доступны только макроскопические альтернативы "кот мертв" и "кот жив", а не макроскопические суперпозиции таких состояний? ... Я предполагаю, что с привлечением общей теории относительности, использование суперпозиций альтернативных геометрий пространства-времени сталкивается с серьезными трудностями. Возможно, что суперпозиция двух различных геометрий нестабильна и распадается в одну из этих двух альтернатив. Такими геометриями могли бы быть, например, пространство и время живого или мертвого кота. Для обозначения этого распада суперпозиции в одно из альтернативных состояний я использую термин объективная редукция, который мне нравится, потому что имеет хороший акроним (OR). Какое отношение к этому имеет планковская длина 10-33 сантиметра? Такая длина является естественным критерием для определения того, являются ли геометрии действительно различными мирами. Планковский масштаб определяет также и временной масштаб, при котором происходит редукция в различные альтернативы. Хокинг о квантовой космологии: Я заканчиваю эту лекцию обсуждением вопроса, по поводу которого Роджер и я имеем различные взгляды - это стрела времени. Имеется очень ясное различие между прямым и обратным направлениями времени в нашей части вселенной. Достаточно прокрутить назад любой фильм, чтобы увидеть это различие. Вместо чашек, падающих со стола и рассыпающихся на мелкие кусочки, мы видели бы как эти осколки вновь собираются вместе и вскакивают обратно на стол. Разве реальная жизнь похожа не что-либо подобное?. Локальные законы физические полей удовлетворяют требованию симметрии во времени, или если быть более точным CPT-инвариантности (Carge-Parity-Time Заряд-Четность-Время). Таким образом, наблюдаемое различие между прошлым и будущим происходит от граничных условий вселенной. Рассмотрим модель, в которой пространственно замкнутая вселенная расширяется до максимального размера, после чего вновь коллапсирует. Как подчеркнул Роджер, вселенная будет сильно различается в конечных пунктах этой истории. В своем начале вселенная, как мы теперь думаем, будет довольно гладкой и регулярной. Однако, когда она начнет снова коллапсировать, мы ожидаем, что она будет чрезвычайно беспорядочна и нерегулярна. Поскольку беспорядочных конфигураций гораздо больше чем упорядоченных, это означает, что начальные условия должны быть выбраны чрезвычайно точно. Вследствие этого граничные условия должны быть различными в эти моменты времени. Предположение Роджера состоит в том, что Вейлевский тензор должен обратиться в нуль только в одном из концов времени. Вейлевский тензор - та часть кривизны пространства-времени, которая не определяется локальным распределением материи через уравнения Эйнштейна. Эта кривизна чрезвычайно мала в упорядоченной ранней стадии, и очень велика в коллапсирующей вселенной. Таким образом, это предложение позволило бы нам отличить оба конца времени друг от друга и объяснить существование стрелы времени. Я думаю, что предложение Роджера является Вейлевским в двух смыслах этого слова. Во-первых, оно - не CPT-инвариантно. Роджер рассматривает это свойство как достоинство, но как я чувствую, не нужно отказываться от симметрий без достаточно весомых на то причин. Во вторых, если бы Вейлевский тензор был точно равен нулю на ранней стадии вселенной, то она оставалась бы однородной и изотропной в течение всего последующего времени. Вейлевская гипотеза Роджера не может объяснять ни флуктуации микроволнового фона, ни возмущения, которые вызывают галактики и тела, подобные нам самим. Несмотря на все это, я думаю, что Роджер указал на очень важное различие между этими двумя границами времени. Но факт, что малость Вейлевского тензора в одной из границ, не должна приниматься нами ad hoc, а должна быть получена из более фундаментального принципа "отсутствия границ" .... Каким образом две временные границы могут быть различными? Почему возмущения должны быть малы в одной из них, но не в другой? Причина этого в том, что уравнения поля имеют два возможных комплексных решения.... Очевидно, что одно решение соответствует одной границе времени, а другое - другой .... В одном конце времени, вселенная была очень гладкой, и Вейлевский тензор - мал. Однако, точно он не мог быть равен нулю, поскольку это приводит к нарушению соотношения неопределенности. Вместо этого должны иметь место небольшие флуктуации, которые позже могут превратиться в галактики и тела, подобно нам самим. В противоположность началу, конец вселенная должен быть очень нерегулярным и хаотичным, а Вейлевский тензор очень большим. Это объяснило бы почему имеет место стрела времени и почему чашки падают со стола и разбиваются гораздо охотнее, чем восстанавливаются и вскакивают обратно. Пенроуз о квантовой космологии: Из того, что я понял в концепции Стивена, я делаю вывод, что наши разногласия по данному вопросу (Вейлевская гипотеза кривизны) чрезвычайно велики ...Для начальной сингулярности Вейлевская кривизна приблизительно является нулевой .... Стивен спорил, что в начальном состоянии должны иметь место маленькие квантовые флуктуации, и поэтому гипотеза о нулевой Вейлевской кривизне является классической и неприемлемой. Но я думаю, что имеется некоторая свобода относительно точной формулировки этой гипотезы. Маленькие возмущения конечно же приемлемы с моей точки зрения в квантовом режиме. Мы нуждаемся только в том, чтобы существенно ограничить эти флуктуации около нуля .... Возможно, что принцип "отсутствия границ" Джеймса-Хартли-Хокинга является хорошим кандидатом для описания структуры начального состояния. Однако, как мне кажется, для объяснения заключительного состояния необходимо что-то другое. В частности, теория, объясняющая структуру сингулярностей, должна была бы включать в себя нарушение CPT и других симметрий, для того чтобы быть совместимой с гипотезой Вейлевской кривизны. Такое нарушение симметрии времени могло бы быть весьма малым; и могло бы неявно содержаться в новой теории, выходящей за пределы квантовой механики. Хокинг о физической реальности: Эти лекции очень ясно показали различие между Роджером и мной. Он - платонист, а я - позитивист. Он всерьез озабочен, что кот Шредингера находится в квантовом состоянии, в котором он наполовину жив, а наполовину мертв. Он предчувствует в этом несоответствие действительности. Но меня такие вещи не беспокоят. Я не требую, чтобы теория соответствовала реальности, поскольку не знаю, что такое реальность. Реальность это не качество, которое вы можете проверить лакмусовой бумагой. Все, о чем я беспокоюсь это то, чтобы теория предсказывала результаты измерений. Квантовая теория делает это очень успешно .... Роджер чувствует, что ... коллапс волновой функции привносит в физику нарушение CPT-симметрии. Он видит такие нарушения в работе по крайней мере в двух областях физики: космология и черные дыры. Я соглашаюсь, что мы можем использовать асимметрию времени, когда задаем вопросы относительно наблюдений. Но я полностью отклоняю идею, что имеются некие физические процессы, приводящие к редукции волновой функции, или что это имеет какое-либо отношение к квантовой гравитации или сознанию. Это все имеет отношение к волшебству и магии, но не к науке. Пенроуз о физической реальности: Квантовая механика существует всего только 75 лет. Это не очень много, особенно если сравнивать, например, с теорией гравитации Ньютона. Поэтому я не удивлюсь, если квантовая механика будет модифицирована для очень больших объектов. В начале этих дебатов Стивен высказал мысль, что он - позитивист, а я - платонист. Я рад, что он позитивист, но относительно себя могу сказать, что я скорее являюсь реалистом. К тому же, если сравниваете эти дебаты с известными дебатами Бора и Эйнштейна, приблизительно 70 лет назад, я думаю, что Стивен играет роль Бора, а я - роль Эйнштейна! Для Эйнштейна было необходимо, чтобы существовало нечто похожее на реальный мир, описываемое не обязательно волновой функцией, в то время как Бор подчеркивал, что волновая функция не описывает не реальный мир, а только знание, необходимое для предсказания результатов эксперимента. Сейчас считается, что аргументы Бора оказались более весомыми, и что Эйнштейн (согласно его биографии, написанной Абрахамом Паисом) мог уже с 1925 года заниматься рыбалкой. И действительно, он не внес большого вклада в квантовую механику, хотя его проницательная критика была очень полезна для последней. Я полагаю, что причина этого была в том, что в квантовой теории отсутствовали некоторые важные компоненты. Одним из таких компонентов было открытое Стивеном 50 годами позже излучения черных дыр. Утечка информации, связанная с излучением черной дыры, есть тот феномен, который возможно поднимет квантовую теорию на новый уровень. Оригинальный текст: http://www.sciam.com/0796issue/0796hawking.html. Перевод с английского Андрея Крашеницы ().
|