Ефремов А.П. (Yefremov A.P.)
Orthogonal representation of complex numbers
// Gravitation and Cosmology. 2010. 16(2): 137-139.
doi: 10.1134/S0202289310020064Категории: Исследование, Авторский указатель
Orthogonal representation of complex numbers
Аннотация
Units of the complex numbers algebra given by 2 × 2 matrices are shown to be composed of elementary spinors. This leads to a novel representation of any complex number in a two-dimensional orthogonal form, each direction referred to an idempotent matrix built of the spinors’ components. Introduction of a “diagonal operator,” a poly-index generalization of the Kronecker symbol, allows establishing equivalence of idempotent matrices and a vector description of the orthogonal axes.
- Скачать статью: Download
- Размер: 339.83 KB