Последнее обновление -
Заседание семинара 18 мая 2021 г.
Musin Yu.R.
Спин и время
// Российкий междисциплинарный семинар по темпорологии имени А.П. Левича. Заседание семинара 18 мая 2021 г.
[последнее обновление: 03.06.2021] Заседание семинара 18 мая 2021 г. № 741Спин и времяЮрат Pашитович Мусин, This email address is being protected from spambots. You need JavaScript enabled to view it. к.ф.-м.н., доцент МАИ Суперсимметричные расширения пространства Минковского оказались весьма успешными для наполнения геометрическим смыслом суперсимметричных теорий поля. Применение данной идеи к механике частиц со спином – введение суперсимметричного времени и построение псевдоклассической механики, как механики над антикоммутирующими переменными (механика над алгеброй Грассмана) было в основном завершено в 90-тых годах прошлого века Березиным, Ди Векиа, Равнделом, Рампфом и рядом других авторов [1,2,3]. Были построены классические модели точечного электрона, обладающего спином и имеющего правильное гиромагнитное отношение. Автором вместе с сотрудниками в рамках этих моделей были получены точные аналитические решения для электрона со спином в кулоновском поле, исследовались различные численные модели. В дальнейшем автору удалось построить аналогичные псевдоклассические модели всех лептонов и кварков с использованием введения понятия «композитной частицы» [4,5,6]. В рамках композитной модели удалось объяснить наличие только трех поколений и только у спинорных частиц, объяснить неожиданные результаты [7] измерения радиуса протонов с помощью мюонов. Построение моделей фундаментальных частиц высших спинов прояснило внутреннюю структуру расширенного супервремени. Оказалось, что только в плоском супервремени, на котором «живут» спинорные частицы (лептоны и кварки) существуют три области, между которыми невозможно взаимодействие (некоторый аналог областей, на которые световой конус разбивает пространство Минковского). Никаких поколений у частиц со спинами более 1/2 быть не может. Все частицы, даже с нулевым спином могут иметь нечетные компоненты времени, то они в этом случае должны быть замкнутыми. Спин фундаментальных частиц в рамках развиваемого подхода есть не что иное как топологическое свойство самого времени. В докладе предполагается объяснить первые понятия суперматематики, лежащие в основе вычислений. Систематическое построение соответствующего математического аппарата приведено в недавно вышедшей книге [8]. Просим участников подготовиться к заседанию семинара по рекомендованной докладчиком литературе:
| ||||