Site search: 
Youtube channel
VK group
 
Copyright © 2021 Institute for Time Nature Explorations. All Rights Reserved.
Joomla! is Free Software released under the GNU General Public License.
Library of Electronic Publications

Авторский указатель

В связи с реконструкцией сайта материалы, размещенные ранее
30.12.2013
, можно найти через поиск или увидеть на
старом варианте страницы.
Korotaev S.M. О развитии и применении причинной механики Н.А.Козырева в физике и геофизике // ИИПВ. 2021. 5 с. (Скачать) [distributed 06.04.2021]
Yefremov A.P. Кватернионы: алгебра, геометрия и физические теории // Гиперкомплексные числа в геометрии и физике. 2004. Т.1, №1-1, С. 111-127. (Скачать) [distributed 29.11.2020]
Bulyzhenkov I.E. Induced emission of electromagnetic waves from Josephson media // Soviet Journal of Quantum Electronics. 1984. 14(2): 229-232. (Скачать) [distributed 17.02.2021]
Blinov S.V. , Bulyzhenkov I.E. Verification of the Rigidity of the Coulomb Field in Motion // Russian Physics Journal. 2018. 61(2): 321-329. doi: 10.1007/s11182-018-1403-9 (Скачать) [distributed 17.02.2021]
Bulyzhenkov I.E. About the nonlocal particle-field matter // 1998. arXiv preprint physics/9811055. (Скачать) [distributed 17.02.2021]
Bulyzhenkov I.E. Cartesian material space with active-passive densities of complex charges and Yin-Yang compensation of energy integrals // Galaxies. 2018. 6(2): 60. doi: 10.3390/galaxies6020060 (Скачать) [distributed 17.02.2021]
Bulyzhenkov I.E. Covariant equations for superconductors // Physics Letters A. 1991. 158(9): 483-485. doi: 10.1016/0375-9601(91)90465-K (Скачать) [distributed 17.02.2021]
Bulyzhenkov I.E. Densities of Complex Charges Unify Particles with Fields and Gravity with Electricity // Bulletin Lebedev Physics Inst. 2016. 43: 138. (Скачать) [distributed 17.02.2021]
Bulyzhenkov I.E. Densities of Electron's Continuum in Gravitational and Electromagnetic Fields // Bulletin Lebedev Physics Inst. 2014. 41: 1-5. (Скачать) [distributed 17.02.2021]
Bulyzhenkov I.E. Dispersion of transverse sound in the model of layered high-Tc superconductors // Solid state communications. 1993. 85(6): 513-518. doi: 10.1016/0038-1098(93)90010-K (Скачать) [distributed 17.02.2021]
Bulyzhenkov I.E. Double unification, time compression, and space flatness for the extended particle // 1997. arXiv preprint gr-qc/9708004. (Скачать) [distributed 17.02.2021]
Bulyzhenkov I.E. Einstein metric formalism without Schwarzschild singularities // 2006. arXiv preprint math-ph/0603039. (Скачать) [distributed 17.02.2021]
Bulyzhenkov I.E. Einstein's Gravitation for Machian Relativism of Nonlocal Energy-Charges // Int. Journal of Theoretical Physics. 2008. 47: 1261-1269. doi: 10.1007/s10773-007-9559-z (Скачать) [distributed 17.02.2021]
Bulyzhenkov I.E. Electrodynamics of superconducting and normal accelerated media // Physics Letters A. 1994. 185(2): 155-168. doi: 10.1016/0375-9601(94)90840-0 (Скачать) [distributed 17.02.2021]
Bulyzhenkov I.E. From Steady 4D Quantization of Valence Electrons to Material Space Paradigm // Journal of Chemistry and Chemical Engineering. 2013. 7(4). 370-373. (Скачать) [distributed 17.02.2021]
Bulyzhenkov I.E. Geometrization of radial particles in non-empty space complies with tests of General Relativity // Journal of Modern Physics. 2012. 3(10): 1465. doi: 10.4236/jmp.2012.310181 (Скачать) [distributed 17.02.2021]
Bulyzhenkov I.E. Gravitational attraction until relativistic equipartition of internal and translational kinetic energies // Astrophysics and Space Science. 2018. 363(2): 1-7. doi: 10.1007/s10509-018-3257-6 (Скачать) [distributed 17.02.2021]
Bulyzhenkov I.E. Gravitational light bending in Euclidean space // 1998. arXiv preprint gr-qc/9805025. (Скачать) [distributed 17.02.2021]
Bulyzhenkov I.E. Gravity until equipartition of relativistic kinetic energies // EPJ Web of Conferences. 2018. 182: 03001. doi: 10.1051/epjconf/201818203001 (Скачать) [distributed 17.02.2021]
Bulyzhenkov I.E. How to test vector nature of gravity // 2000. arXiv preprint gr-qc/0001071. (Скачать) [distributed 17.02.2021]
Bulyzhenkov I.E. Modified Einstein and Navier–Stokes Equations // Russian Physics Journal. 2018. 61(1): 68-75. doi: 10.1007/s11182-018-1369-7 (Скачать) [distributed 17.02.2021]
Bulyzhenkov I.E. Modified Naiver-Stokes equation for conceptual tests of pure field physics // EPJ Web of Conferences. 2018. 182: 02022. doi: 10.1051/epjconf/201818202022 (Скачать) [distributed 17.02.2021]
Bulyzhenkov I.E. Normal current, heat and entropy in superconductors // Solid state communications. 1993. 88(1): 71-74. doi: 10.1016/0038-1098(93)90772-F (Скачать) [distributed 17.02.2021]
Bulyzhenkov I.E. Relativistic Quantization of Cooper Pairs and Distributed Electrons in Rotating Superconductors // Journal of superconductivity and novel magnetism. 2009. 22(7): 627-629. (Скачать) [distributed 17.02.2021]
Relativistic Tests do not Falsify Euclidean 3-Geometry of Continuous Space-matter
Книга:
Булыженков И.Э. (Bulyzhenkov I.E.)
Relativistic Tests do not Falsify Euclidean 3-Geometry of Continuous Space-matter
India, UK: Book Publisher International. 2021. 34 p. [размещено на сайте 17.02.2021]
  • Аннотация:

    The Ancient Greeks presented to philosophers both material space (Plato first said in Timaeus “space and matter are the same”) and Euclidean 3‐geometry for this space. Developing Aristotelian ideas of the spatial plenum‐continuum, Descartes formulated “Philosophiae Naturalis” for his vortex matter‐extension in 1644, well before the 1676 concept of point matter in “Philosophiae Naturalis Principia Mathematica” of Newton. Later, the Newtonian model of material points in immaterial empty 3‐space was adopted by the special (1905) and general (1915) theories of relativity that led to curved 3‐space, non‐physical singularities and sophisticated metric constructions with black holes.

    The Euclidean geometry of 3‐space is one of the premier examples of the synthetic a priori knowledge of Immanuel Kant. He consistently suggested the inner core of massive stars in the Euclidean Milky Way and in external nebulae, including the Andromeda nebula. However, today the relativistic physics of point masses became unable to describe their interaction in flat space. Leading experts insist that the Schwarzschild metric with curved 3‐space is a robust benchmark for General Relativity (GR) due to precise measurements of predicted post‐Newtonian corrections. Despite the fact that Euclidean space and Kant's cosmology are very unpopular with modern relativists, I try to remind by this book that any experiments can only falsify theoretical calculations but never justify them before competing theories (thanks to Karl Popper). Cartesian matter‐extension can be described in the same metric terms of Einstein's theory but without the Schwarzschild solution and singularities. Moreover, the curved space‐ time with Euclidean 3‐space of extended masses can quantitatively explain all known GR tests, as well as the absence of SQUID accelerometers and gravitational analogues of the Aharonov‐Bohm effect. Instead of a positive (measurable) matter‐extension of Descartes, Newtonian space is filled everywhere by negative (immeasurable) gravitational energy. And this negative (non‐existing in reality) energy‐potential still controls the motion of positive kinetic energies in contemporary textbooks as a “divine action‐at‐a‐distance”. Such a palliative of empty space with postulated negative energies does not a more advanced ontology than Ptolemy's model with postulated epicentres of planetary motion. The Plato‐Aristotle‐Descartes continuum of kinetic space‐matter with positive energy densities together with quantum nonlocality of material extensions in Euclidean 3‐space may provide more reliable references for relativistic geometrisation of material fields, including the nonlocal unity of the quasi‐equilibrium solar system.

    These training chapters for advanced students reiterate the introductory math formalism for extended masses (DOI: 10.4236/jmp.2012.310181) and precede the next level tutorial “Pure field electrodynamics of continuous complex charges” for the 4th‐ and 5th‐year students at the Moscow Institute of Physics and Technology (Moscow: MIPT, 2015, ISBN 978‐5‐7417‐0554‐4, https://search.rsl.ru/ru/record/01007979504). Below we will discuss quantitatively that the curved space‐time 4‐interval of any probe particle does not contradict the flat non‐empty 3‐space, which, in turn, assumes the global material overlap of continuous masses or the nonlocal Universe with universal Euclidean geometry. Particle's time is a chain function of particle's displacement or the physical velocity and this time differs from the proper time of a motionless local observer. Equal passive and active relativistic energy‐charges are used to comply with universal free fall and the Principle of Equivalence in non‐empty (material) space, where continuous radial densities of elementary energy‐charges obey local superpositions and the nonlocal organization. The known precession of planetary perihelion, radar echo delay, and gravitational light bending can be quantitatively explained by the singularity‐free metric without deviating from Euclidean spatial geometry. The flat‐space precession of non‐point orbiting gyroscopes is non‐Newtonian one due to the Einstein dilation of local time within the Earth's radial energy‐charge, and not due to unphysical warping of Euclidean space.

  • 978-93-90516-07-0
  • Купить книгу на bookpi.org
  • Скачать книгу: Download
Bulyzhenkov I.E. Ricci curvatures describe both field and particle densities // International Scientific Journal. 2011. 11: 23-26. (Скачать) [distributed 17.02.2021]
Bulyzhenkov I.E. Superfluid Mass-Energy Densities of Nonlocal Particle and Gravitational Field // Journal of superconductivity and novel magnetism. 2009. 22(8): 723. (Скачать) [distributed 17.02.2021]
Bulyzhenkov I.E. Tesla energy space for Mie–Schwinger continuous electron // Vestnik RUDN, Mathematics, Informatics, and Physics. 2013. (1): 202. (Скачать) [distributed 17.02.2021]
Bulyzhenkov I.E. Thermal Energy of Confined Gravitons can Vary Cold Geodesic Curves // Journal of Physical Science and Application. 2014. 4(7): 468-474. (Скачать) [distributed 17.02.2021]
Bulyzhenkov I.E. Thermoelectric flux in superconducting hollow cylinders // Physical Review B. 1995. 51(2): 1137. doi: 10.1103/PhysRevB.51.1137 (Скачать) [distributed 17.02.2021]
[12 3 4 5  >>  



Наверх