Site search: 
Youtube channel
VK group
 
Copyright © 2024 Institute for Time Nature Explorations. All Rights Reserved.
Joomla! is Free Software released under the GNU General Public License.
Заседание семинара 15 ноября 2011 г.
Заседание семинара 15 ноября 2011 г. || Категории: Видеозаписи 2011 г. [размещено на сайте 15.04.2014]

Заседание семинара 15 ноября 2011 г.
0.0/5 rating (0 votes)

15 November, Tuesday

1) Анонсирование будущего доклада: Левич А.П. (Levich A.P.) (This email address is being protected from spambots. You need JavaScript enabled to view it.) "Моделирование времени-пространства открытых систем: строение, размерность, арифметизация".

0.0/5 rating (0 votes)
Замысел работы – предложить модель, в которой течение времени и пространственное вместилище моделируемых систем оказываются не внешними по отношению к модели параметрами, а её конструктами. Также не хотелось бы без достаточных оснований вводить аналитический аппарат математики: комплексные или действительные числа, размерности и топологию многообразий и т.п. Выражаясь лапидарно, частицы – это не корпускулы, а излучающие нечто источники. Постулирую существование двух форм материи: 1) субстрата, состоящего из частиц, и 2) субстанций, состоящих из дискретных элементов. Представлю частицу парой (Q, f), где Qисточник или сток субстанции, а fшлейф из испущенных источником (поглощенных стоком) элементов субстанции (позволю себе для краткости изложения в дальнейшем говорить только об источниках, подразумевая, что сток определен как "источник противоположного знака"). Совокупность нескольких частиц называю системой. Совокупность шлейфов этих частиц называю метаболическим пространством системы, а элементы субстанции – точками этого пространства. Подчеркну, что, согласно определению, "настоящие" элементы пространства – это не точки, а шлейфы субстанции. Части метаболического пространства могут не содержать источники частиц, но они никогда не пусты, так как "состоят" из материальной субстанции – шлейфов частиц. Состоянию метаболического пространства наиболее адекватно соответствует не термин "вакуум" (в переводе – пустое пространство), а его греческий антоним "пленум" (который буквально переводится как "непустое пространство"). Отмечу, что в модели и частицы, и пространство есть открытые по отношению к субстанциям, а не изолированные объекты мира. Допускаю существование субстанций нескольких типов. Они представляют собой несводимые друг к другу, невзаимозаменимые сущности и порождают различные типы зарядов, взаимодействий и метаболических времен. Метаболическое пространство может объединять шлейфы субстанций различных типов. Назову метаболической размерностью D метаболического пространства количество типов субстанций в составляющих метаболическое пространство шлейфах. Постулирую существование эталонного расстояния между соседними точками шлейфов эталонной субстанции и назову его шагом эталона измерения расстояний, подразумевая, что выполняется принцип императивности для эталона расстояния: шаги между всеми соседними точками эталона измерения расстояний одинаковы. Назову эталонной метаболической линейкой тройку, состоящую из эталона измерения расстояний, метаболического счетчика элементов и шага . Назову расстоянием по эталонной метаболической линейке (метаболическим расстоянием) между двумя точками метаболического пространства эталонной субстанции число , где – количество точек метаболического пространства между указанными точками и – шаг эталона измерения расстояний. Каждому из dD измерений ("осей координат") времени-пространства можно сопоставить пару чисел (td,xd), задаваемых количеством td элементов субстанции типа d, появившихся с момента начала отсчета, и расстоянием xd от начала отсчета, измеренному линейкой типа d. Таким образом, в D-мерном времени-пространстве имеется D пар координат (td,xd) – D временных и D пространственных. Возникает соблазн эксплицировать пару (td,xd), d D комплексным числом xd+ id td. Насколько оправдана такая экспликация, подразумевающая очень специфический закон умножения: (t1 , x1)(t2 , x2) = (x1t2 + x2t1 , x1x2 - t1t2)? Существуют ли физические или методологические обоснования такого закона? Следует ли в случае "комплексификации" измерений пространства считать мнимые единицы id различными и само пространство – гиперкомплексным? Более естественным для метаболического подхода видится эйлерово представление комплексных чисел ρeiφ, где обобщенные координаты (ρ, φ) можно интерпретировать в физических терминах – длина, фаза, энергия, время, действие… Очередной вопрос метаболического подхода – может ли закон умножения (в декартовой или полярной форме) быть введен "естественным" образом, а не формальным заимствованием из алгебры? Согласно модели, частица "состоит" из источника и шлейфа элементов субстанции, образующего вместе со шлейфами других частиц метаболическое пространство. И, если источник "точечен", то шлейф распределен во всем пространстве, точнее, объединение шлейфов и есть само пространство. Таким образом, частица как целое локализована не в "точке", а во всем пространстве. То же относится к временной протяжности частицы. Другими словами, частицы нелокальны как во времени, так и в пространстве, так как существуют не в отдельные, а во все моменты во всех точках своего времени-пространства. Частицы в метаболической модели нестационарны: шлейфы частиц "растут" (или "сокращаются") в каждый момент метаболического времени (точнее, этот "рост" и есть по определению "метаболическое время"). О "росте" шлейфов можно сказать и как об их "распространении" в метаболическом пространстве (если в качестве системы отсчета принять не элементы субстанции, а их источник), а о самом шлейфе с чередованием бытия и небытия своих элементов с шагом и периодом можно говорить как о "метаболической волне", обладающей как пространственной, так и временной плотностью. Метаболическое пространство было определено как совокупность шлейфов частиц. Это определение можно переформулировать как "объединение метаболических волн". В этом смысле метаболическое пространство приобретает "динамическую структуру", которая усложняет представления о дискретности пространства. С одной стороны, оно "состоит" из дискретных элементов субстанции, но, с другой стороны, ни в какой момент времени и ни в какой области пространства не существует какой-либо стационарной дискретной структуры. Порождающие пространство шлейфы субстанций некоторых типов могут быть неравномерны. Это означает, что среди длительностей и/или расстояний между соседними элементами в них есть не равные друг другу (при измерении с помощью периода и шага шлейфа эталонной субстанции). Такая неравномерность может быть интерпретирована как неоднородность метаболического времени-пространства, приводящая, согласно геометрической концепции, к взаимодействиям частиц. (A.P. Levich. Generating Flows and a Substantional Model of Space-Time // Gravitation and Cosmology. 1995. V.1. №3. Pp. 237-242. A.P.Levich. Paradigms of natural science and substantial temporology // The Nature of Time: Geometry, Physics and Perception. Edited by Rosolino Buccheri, Metod Saniga, and William Mark Stuckey. Kluwer Academic Publishers: Dordrecht / Boston / London (published in cooperation with NATO Scientific Affairs Division), 2003. Pp. 427-435. Левич А.П. Модель частиц, порождающая пространство-время и становление // Основания физики и геометрии. М.: РУДН, 2008. С. 153-188. А.П.Левич. Моделирование природных референтов времени: метаболическое время и пространство // На пути к пониманию феномена времени: конструкции времени в ес­тествознании. Часть 3. Методология. Физика. Биология. Математика. Теория систем. М.: Прогресс-Традиция, 2009. С. 259-337.) Комментировать

2) Доклад: Морозов А.Н. "Неравновесные состояния и необратимые процессы".

0.0/5 rating (0 votes)

Предложено описание необратимых процессов как немарковских случайных процессов. Показано, что для описания немарковских процессов требуется применение интегральных уравнений. Проведено рассмотрение броуновского движения, диффузии и теплопроводности в рамках теории необратимых немарковских процессов. Установлено возникновение фликкер-шума при протекании необратимых немарковских процессов. Выполнены экспериментальные исследования токовых шумов в малых объемах электролита и установлена возможность измерения степени неравновесности состояния путем измерения меры Кульбака.

 

Презентация Download Связанные материалы - не заполнять Комментировать

Фоторепортаж о заседании

Фоторепортаж о заседании

  • 001
  • 002
  • 003
  • 004
  • 005
  • 006
  • 007
  • 008
  • 009
  • 010
  • 011
  • 012
  • 013
  • 014
  • 015
  • 016
  • 017
  • 018
  • 019

Ретроспектива:

Осенний семестр 2011 г.
Видеосъемку произвел Н.И.Щербаков



Наверх